Cellular and Molecular Life Sciences

, Volume 76, Issue 19, pp 3745–3752 | Cite as

Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer

  • Pascal D. Vos
  • Peter J. Leedman
  • Aleksandra Filipovska
  • Oliver RackhamEmail author


RNA-binding proteins (RBPs) and microRNAs (miRNAs) are the most important regulators of mRNA stability and translation in eukaryotic cells; however, the complex interplay between these systems is only now coming to light. RBPs and miRNAs regulate a unique set of targets in either a positive or negative manner and their regulation is mainly opposed to each other on overlapping targets. In some cases, the levels of RBPs or miRNAs regulate the cellular levels of one another and decreased levels of either results in changes in translation of their targets. There is growing evidence that these regulatory circuits are crucial in the development and progression of cancer; however, the rules underlying synergism and antagonism between miRNAs and RNA-binding proteins remain unclear. Synthetic biology seeks to develop artificial systems to better understand their natural counterparts and to develop new, useful technologies for manipulation of gene expression at the RNA level. The recent development of artificial RNA-binding proteins promises to enable a much greater understanding of the importance of the functional interactions between RNA-binding proteins and miRNAs, as well as enabling their manipulation for therapeutic purposes.


miRNA Designer RNA-binding proteins Pentatricopeptide repeat PUF domain Synthetic biology RNA–protein interactions RNA interference 



Research in our groups has been supported by fellowships, scholarships and grants from the Australian Research Council (FT0991008, FT0991113, DP140104111 to A. F. and O. R.), the National Health and Medical Research Council (APP1058442, APP1045677 to A. F. and O. R.,APP1071081 and APP1084964 to P. L), and the Cancer Council Western Australia (to A. F. and O. R.).


  1. 1.
    Erson AE, Petty EM (2008) MicroRNAs in development and disease. Clin Genet 74:296–306CrossRefGoogle Scholar
  2. 2.
    Cowland JB, Hother C, Gronbaek K (2007) MicroRNAs and cancer. APMIS 115:1090–1106CrossRefGoogle Scholar
  3. 3.
    Lee RC (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefGoogle Scholar
  4. 4.
    Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906CrossRefGoogle Scholar
  5. 5.
    Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14CrossRefGoogle Scholar
  6. 6.
    Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105CrossRefGoogle Scholar
  7. 7.
    Lee Y, Jeon K, Lee J-T et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670CrossRefGoogle Scholar
  8. 8.
    Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640CrossRefGoogle Scholar
  9. 9.
    Denli AM, Tops BBJ, Plasterk RH et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235CrossRefGoogle Scholar
  10. 10.
    Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016CrossRefGoogle Scholar
  11. 11.
    Lund E, Güttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 80(303):95–98CrossRefGoogle Scholar
  12. 12.
    Kobayashi H, Tomari Y (2016) RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta Gene Regul Mech 1859:71–81CrossRefGoogle Scholar
  13. 13.
    Iwakawa HO, Tomari Y (2015) The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol 25:651–665CrossRefGoogle Scholar
  14. 14.
    Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14:447–459CrossRefGoogle Scholar
  15. 15.
    Kim HH, Kuwano Y, Srikantan S et al (2009) HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23:1743–1748CrossRefGoogle Scholar
  16. 16.
    Epis MR, Barker A, Giles KM et al (2011) The RNA-binding protein HuR opposes the repression of ERBB-2 gene expression by microRNA miR-331-3p in prostate cancer cells. J Biol Chem 286:41442–41454CrossRefGoogle Scholar
  17. 17.
    Chen Y, Yang F, Zubovic L et al (2016) Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins. Nat Chem Biol 12:717–723CrossRefGoogle Scholar
  18. 18.
    Kedde M, van Kouwenhove M, Zwart W et al (2010) A Pumilio-induced RNA structure switch in p27-3’ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12:1014–1020CrossRefGoogle Scholar
  19. 19.
    Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441CrossRefGoogle Scholar
  20. 20.
    Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379CrossRefGoogle Scholar
  21. 21.
    Chen Y, Boland A, Kuzuoǧlu-Öztürk D et al (2014) A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell 54:737–750CrossRefGoogle Scholar
  22. 22.
    Ørom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471CrossRefGoogle Scholar
  23. 23.
    Vasudevan S, Tong Y, Steitz JA (2008) Cell cycle control of microRNA-mediated translation regulation. Cell Cycle 7:1545–1549CrossRefGoogle Scholar
  24. 24.
    Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845CrossRefGoogle Scholar
  25. 25.
    Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490CrossRefGoogle Scholar
  26. 26.
    Auweter SD, Oberstrass FC, Allain FHT (2006) Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 34:4943–4959CrossRefGoogle Scholar
  27. 27.
    Neelamraju Y, Hashemikhabir S, Janga SC (2015) The human RBPome: from genes and proteins to human disease. J Proteom 127:61–70CrossRefGoogle Scholar
  28. 28.
    Pereira B, Billaud M, Almeida R (2017) RNA-binding proteins in cancer: old players and new actors. Trends Cancer 3:506–528CrossRefGoogle Scholar
  29. 29.
    Medioni C, Mowry K, Besse F (2012) Principles and roles of mRNA localization in animal development. Development 139:3263–3276CrossRefGoogle Scholar
  30. 30.
    Rackham O, Brown CM (2004) Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J 23:3346–3355CrossRefGoogle Scholar
  31. 31.
    Treiber T, Treiber N, Plessmann U et al (2017) A compendium of RNA-binding proteins that regulate MicroRNA biogenesis. Mol Cell 66:270–284CrossRefGoogle Scholar
  32. 32.
    Srikantan S, Tominaga K, Gorospe M (2012) Functional interplay between RNA-binding protein HuR and microRNAs. Curr Protein Pept Sci 13:372–379CrossRefGoogle Scholar
  33. 33.
    Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12CrossRefGoogle Scholar
  34. 34.
    Cho WCS (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6:60CrossRefGoogle Scholar
  35. 35.
    Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799CrossRefGoogle Scholar
  36. 36.
    Akao Y, Nakagawa Y, Naoe T (2006) let-7 MicroRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906CrossRefGoogle Scholar
  37. 37.
    Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47:1127–1137CrossRefGoogle Scholar
  38. 38.
    Meisner N-C, Filipowicz W (2011) Properties of the regulatory RNA-binding protein HuR and its role in controlling miRNA repression. Adv Exp Med Biol 700:106–123CrossRefGoogle Scholar
  39. 39.
    Young LE, Moore AE, Sokol L et al (2012) The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res 10:167–180CrossRefGoogle Scholar
  40. 40.
    Webster RJ, Giles KM, Price KJ et al (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by MicroRNA-7. J Biol Chem 284:5731–5741CrossRefGoogle Scholar
  41. 41.
    Abdelmohsen K, Kim MM, Srikantan S et al (2010) miR-519 suppresses tumor growth by reducing HuR levels. Cell Cycle 9:1354–1359CrossRefGoogle Scholar
  42. 42.
    Abdelmohsen K, Srikantan S, Kuwano Y, Gorospe M (2008) miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci 105:20297–20302CrossRefGoogle Scholar
  43. 43.
    Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949CrossRefGoogle Scholar
  44. 44.
    Jing Q, Huang S, Guth S et al (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634CrossRefGoogle Scholar
  45. 45.
    Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1:15004CrossRefGoogle Scholar
  46. 46.
    van Kouwenhove M, Kedde M, Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11:644–656CrossRefGoogle Scholar
  47. 47.
    Zhang L (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141CrossRefGoogle Scholar
  48. 48.
    Kim MS, Oh JE, Kim YR et al (2010) Somatic mutations and losses of expression of microRNA regulation-related genes AGO2 and TNRC6A in gastric and colorectal cancers. J Pathol 221:139–146CrossRefGoogle Scholar
  49. 49.
    Melo SA, Moutinho C, Ropero S et al (2010) A genetic defect in exportin-5 traps precursor MicroRNAs in the nucleus of cancer cells. Cancer Cell 18:303–315CrossRefGoogle Scholar
  50. 50.
    Suzuki HI, Yamagata K, Sugimoto K et al (2009) Modulation of microRNA processing by p53. Nature 460:529–533CrossRefGoogle Scholar
  51. 51.
    Mori M, Triboulet R, Mohseni M et al (2014) Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell 156:893–906CrossRefGoogle Scholar
  52. 52.
    Hebar A, Valent P, Selzer E (2013) The impact of molecular targets in cancer drug development: major hurdles and future strategies. Expert Rev Clin Pharmacol 6:23–34CrossRefGoogle Scholar
  53. 53.
    Steins M, Thomas M, Geißler M (2018) Erlotinib. Recent results in cancer research. Springer, Cham, pp 1–17Google Scholar
  54. 54.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726CrossRefGoogle Scholar
  55. 55.
    Auweter SD, Fasan R, Reymond L et al (2006) Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J 25:163–173CrossRefGoogle Scholar
  56. 56.
    Oubridge C, Ito N, Evans PR et al (1994) Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372:432–438CrossRefGoogle Scholar
  57. 57.
    Newman M, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14:1539–1549CrossRefGoogle Scholar
  58. 58.
    Wickens M, Bernstein DS, Kimble J, Parker R (2002) A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet 18:150–157CrossRefGoogle Scholar
  59. 59.
    Filipovska A, Razif MFM, Nygard KKA, Rackham O (2011) A universal code for RNA recognition by PUF proteins. Nat Chem Biol 7:425–427CrossRefGoogle Scholar
  60. 60.
    Filipovska A, Rackham O (2011) Designer RNA-binding proteins: new tools for manipulating the transcriptome. RNA Biol 8:978–983CrossRefGoogle Scholar
  61. 61.
    Filipovska A, Rackham O (2012) Modular recognition of nucleic acids by PUF, TALE and PPR proteins. Mol Biosyst 8:699CrossRefGoogle Scholar
  62. 62.
    Wang X, McLachlan J, Zamore PD, Hall TMT (2002) Modular recognition of RNA by a human Pumilio-homology domain. Cell 110:501–512CrossRefGoogle Scholar
  63. 63.
    Wang Y, Wang Z, Tanaka Hall TM (2013) Engineered proteins with Pumilio/fem-3 mRNA binding factor scaffold to manipulate RNA metabolism. FEBS J 280:3755–3767CrossRefGoogle Scholar
  64. 64.
    Ozawa T, Natori Y, Sato M, Umezawa Y (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 4:413–419CrossRefGoogle Scholar
  65. 65.
    Yoshimura H, Ozawa T (2018) Real-time fluorescence imaging of single-molecule endogenous noncoding RNA in living cells. Humana Press, New York, pp 337–347Google Scholar
  66. 66.
    Yoshimura H, Inaguma A, Yamada T, Ozawa T (2012) Fluorescent probes for imaging endogenous β-actin mRNA in living cells using fluorescent protein-tagged pumilio. ACS Chem Biol 7:999–1005CrossRefGoogle Scholar
  67. 67.
    Yamada T, Yoshimura H, Inaguma A, Ozawa T (2011) Visualization of nonengineered single mRNAs in living cells using genetically encoded fluorescent probes. Anal Chem 83:5708–5714CrossRefGoogle Scholar
  68. 68.
    Yoshimura H, Ozawa T (2016) Monitoring of RNA dynamics in living cells using PUM-HD and fluorescent protein reconstitution technique. Methods in enzymology. Academic Press, Cambridge, pp 65–85Google Scholar
  69. 69.
    Cooke A, Prigge A, Opperman L, Wickens M (2011) Targeted translational regulation using the PUF protein family scaffold. TL-108. Proc Natl Acad Sci USA 108:15870–15875CrossRefGoogle Scholar
  70. 70.
    Cao J, Arha M, Sudrik C et al (2015) A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells. Nucleic Acids Res 43:4353–4362CrossRefGoogle Scholar
  71. 71.
    Campbell ZT, Valley CT, Wickens M (2014) A protein-RNA specificity code enables targeted activation of an endogenous human transcript. Nat Struct Mol Biol 21:732–738CrossRefGoogle Scholar
  72. 72.
    Cao J, Arha M, Sudrik C et al (2014) Bidirectional regulation of mRNA translation in mammalian cells by using PUF domains. Angew Chem Int Ed Engl 53:4900–4904CrossRefGoogle Scholar
  73. 73.
    Adamala KP, Martin-Alarcon DA, Boyden ES (2016) Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci USA 113:E2579–E2588CrossRefGoogle Scholar
  74. 74.
    Wang Y, Cheong C-G, Hall TMT, Wang Z (2009) Engineering splicing factors with designed specificities. Nat Methods 6:825–830CrossRefGoogle Scholar
  75. 75.
    Wang Y, Wang Z (2016) Design of RNA-binding proteins: manipulate alternative splicing in human cells with artificial splicing factors. In: Clifton NJ (ed) Methods in molecular biology. Humana Press, New York, pp 227–241Google Scholar
  76. 76.
    Coquille S, Filipovska A, Chia T et al (2014) An artificial PPR scaffold for programmable RNA recognition. Nat Commun 5:5729CrossRefGoogle Scholar
  77. 77.
    Filipovska A, Rackham O (2013) Pentatricopeptide repeats. RNA Biol 10:1426–1432CrossRefGoogle Scholar
  78. 78.
    Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670CrossRefGoogle Scholar
  79. 79.
    Barkan A, Rojas M, Fujii S et al (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8:4–11CrossRefGoogle Scholar
  80. 80.
    Lopez Sanchez MIG, Mercer TR, Davies SMK et al (2011) RNA processing in human mitochondria. Cell Cycle 10:2904–2916CrossRefGoogle Scholar
  81. 81.
    Davies SMK, Lopez Sanchez MIG, Narsai R et al (2012) MRPS27 is a pentatricopeptide repeat domain protein required for the translation of mitochondrially encoded proteins. FEBS Lett 586:3555–3561CrossRefGoogle Scholar
  82. 82.
    Rackham O, Filipovska A (2012) The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. Biochim Biophys Acta Gene Regul Mech 1819:1008–1016CrossRefGoogle Scholar
  83. 83.
    Liu G, Mercer TR, Shearwood AMJ et al (2013) Mapping of mitochondrial RNA-protein interactions by digital rnase footprinting. Cell Rep 5:839–848CrossRefGoogle Scholar
  84. 84.
    Rackham O, Busch JD, Matic S et al (2016) Hierarchical RNA processing is required for mitochondrial ribosome assembly. Cell Rep 16:1874–1890CrossRefGoogle Scholar
  85. 85.
    Siira SJ, Spåhr H, Shearwood AMJ et al (2017) LRPPRC-mediated folding of the mitochondrial transcriptome. Nat Commun 8:1532CrossRefGoogle Scholar
  86. 86.
    Small ID, Rackham O, Filipovska A (2013) Organelle transcriptomes: products of a deconstructed genome. Curr Opin Microbiol 16:652–658CrossRefGoogle Scholar
  87. 87.
    Spåhr H, Chia T, Lingford JP et al (2018) Modular ssDNA binding and inhibition of telomerase activity by designer PPR proteins. Nat Commun 9:2212CrossRefGoogle Scholar
  88. 88.
    Cai Y, Mikkelsen JG (2016) Lentiviral delivery of proteins for genome engineering. Curr Gene Ther 16:194–206CrossRefGoogle Scholar
  89. 89.
    Buchholz CJ, Friedel T, Büning H (2015) Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol 33:777–790CrossRefGoogle Scholar
  90. 90.
    Kaczmarczyk SJ, Sitaraman K, Young HA et al (2011) Protein delivery using engineered virus-like particles. Proc Natl Acad Sci 108:16998–17003CrossRefGoogle Scholar
  91. 91.
    Bolhassani A, Jafarzade BS, Mardani G (2017) In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides 87:50–63CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Harry Perkins Institute of Medical Research, QEII Medical CentreNedlandsAustralia
  2. 2.Centre for Medical ResearchThe University of Western AustraliaNedlandsAustralia
  3. 3.School of Molecular and Chemical SciencesThe University of Western AustraliaCrawleyAustralia
  4. 4.Medical SchoolThe University of Western AustraliaCrawleyAustralia
  5. 5.School of Pharmacy and Biomedical SciencesCurtin UniversityBentleyAustralia
  6. 6.Curtin Health Innovation Research Institute, Curtin UniversityBentleyAustralia

Personalised recommendations