Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 19, pp 3711–3722 | Cite as

Protein methylation functions as the posttranslational modification switch to regulate autophagy

  • Rui Li
  • Xiang Wei
  • Ding-Sheng JiangEmail author
Review
  • 227 Downloads

Abstract

Studies over the past decades have elucidated the critical role of autophagy in human health and diseases. Although the processes of autophagy in the cytoplasm have been well studied, the posttranscriptional and epigenetic regulation mechanisms of autophagy are still poorly understood. Protein methylation, including histone methylation and non-histone protein methylation, is the most important type of posttranscriptional and epigenetic modification. Recent studies have shown that protein methylation is associated with effects on autophagosome formation, autophagy-related protein expression, and signaling pathway activation, but the details are still unclear. Thus, it is important to summarize the current status and discuss the future directions of research on protein methylation in the context of autophagy.

Keywords

Autophagy Protein methylation Non-histone protein methylation Histone methylation Methyltransferase Demethylase Posttranslational modification Autophagy-related proteins 

Notes

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (nos. 81600188, 81670050), Tongji Hospital Fund for Distinguished Young Scholars (no. 2016YQ02), and Integrated Innovative Team for Major Human Diseases Program of Tongji Medical College, HUST.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

References

  1. 1.
    Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12:198–202Google Scholar
  2. 2.
    Mei Y, Glover K, Su M, Sinha SC (2016) Conformational flexibility of BECN1: essential to its key role in autophagy and beyond. Protein Sci 25(10):1767–1785.  https://doi.org/10.1002/pro.2984 Google Scholar
  3. 3.
    Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109.  https://doi.org/10.1038/ncb1007-1102 Google Scholar
  4. 4.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075.  https://doi.org/10.1038/nature06639 Google Scholar
  5. 5.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222.  https://doi.org/10.1080/15548627.2015.1100356 Google Scholar
  6. 6.
    Ahmad L, Mashbat B, Leung C, Brookes C, Hamad S, Krokowski S, Shenoy AR, Lorenzo L, Levin M, O’Hare P, Zhang SY, Casanova JL, Mostowy S, Sancho-Shimizu V (2018) Human TANK-binding kinase 1 is required for early autophagy induction upon herpes simplex virus 1 infection. J Allergy Clin Immunol.  https://doi.org/10.1016/j.jaci.2018.09.013 Google Scholar
  7. 7.
    Kato H, Perl A (2018) Blockade of Treg cell differentiation and function by the interleukin-21-mechanistic target of rapamycin axis via suppression of autophagy in patients with systemic lupus erythematosus. Arthritis Rheumatol 70(3):427–438.  https://doi.org/10.1002/art.40380 Google Scholar
  8. 8.
    Liu H, Fang S, Wang W, Cheng Y, Zhang Y, Liao H, Yao H, Chao J (2016) Macrophage-derived MCPIP1 mediates silica-induced pulmonary fibrosis via autophagy. Part Fibre Toxicol 13(1):55.  https://doi.org/10.1186/s12989-016-0167-z Google Scholar
  9. 9.
    Duan X, Kong Z, Mai X, Lan Y, Liu Y, Yang Z, Zhao Z, Deng T, Zeng T, Cai C, Li S, Zhong W, Wu W, Zeng G (2018) Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney. Redox Biol 16:414–425.  https://doi.org/10.1016/j.redox.2018.03.019 Google Scholar
  10. 10.
    Zhang Y, Whaley-Connell AT, Sowers JR, Ren J (2018) Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol Ther 191:1–22.  https://doi.org/10.1016/j.pharmthera.2018.06.004 Google Scholar
  11. 11.
    Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Fullgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93(5):1015–1034.  https://doi.org/10.1016/j.neuron.2017.01.022 Google Scholar
  12. 12.
    Sun CY, Zhang QY, Zheng GJ, Feng B (2018) Autophagy and its potent modulators from phytochemicals in cancer treatment. Cancer Chemother Pharmacol.  https://doi.org/10.1007/s00280-018-3707-4 Google Scholar
  13. 13.
    Tai S, Hu XQ, Peng DQ, Zhou SH, Zheng XL (2016) The roles of autophagy in vascular smooth muscle cells. Int J Cardiol 211:1–6.  https://doi.org/10.1016/j.ijcard.2016.02.128 Google Scholar
  14. 14.
    Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873.  https://doi.org/10.1101/gad.1599207 Google Scholar
  15. 15.
    Hansen M, Rubinsztein DC, Walker DW (2018) Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol 19(9):579–593.  https://doi.org/10.1038/s41580-018-0033-y Google Scholar
  16. 16.
    Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, Tang D (2015) Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11(1):28–45.  https://doi.org/10.4161/15548627.2014.984267 Google Scholar
  17. 17.
    Wani WY, Boyer-Guittaut M, Dodson M, Chatham J, Darley-Usmar V, Zhang J (2015) Regulation of autophagy by protein post-translational modification. Lab Invest 95(1):14–25.  https://doi.org/10.1038/labinvest.2014.131 Google Scholar
  18. 18.
    Kuma A, Mizushima N, Ishihara N, Ohsumi Y (2002) Formation of the approximately 350-kDa Apg12–Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277(21):18619–18625.  https://doi.org/10.1074/jbc.m111889200 Google Scholar
  19. 19.
    Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, Chen J, Zhang M, Liu Y, Ni M, Mo J, Zheng Y, Wan D, Cai X, Cao Y, Xiao W, Ye L, Tu E, Lin Z, Wen J, Lu X, He J, Peng Y, Su J, Zhang H, Zhao Y, Lin M, Zhang Z (2015) ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy 11(8):1308–1325.  https://doi.org/10.1080/15548627.2015.1060386 Google Scholar
  20. 20.
    Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145.  https://doi.org/10.1074/jbc.M702824200 Google Scholar
  21. 21.
    Baek SH, Kim KI (2017) Epigenetic control of autophagy: nuclear events gain more attention. Mol Cell 65(5):781–785.  https://doi.org/10.1016/j.molcel.2016.12.027 Google Scholar
  22. 22.
    Wu Z, Connolly J, Biggar KK (2017) Beyond histones—the expanding roles of protein lysine methylation. FEBS J 284(17):2732–2744.  https://doi.org/10.1111/febs.14056 Google Scholar
  23. 23.
    Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15Google Scholar
  24. 24.
    Byvoet P, Shepherd GR, Hardin JM, Noland BJ (1972) The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch Biochem Biophys 148(2):558–567Google Scholar
  25. 25.
    Trievel RC, Beach BM, Dirk LM, Houtz RL, Hurley JH (2002) Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111(1):91–103Google Scholar
  26. 26.
    Lee S, Oh S, Jeong K, Jo H, Choi Y, Seo HD, Kim M, Choe J, Kwon CS, Lee D (2018) Dot1 regulates nucleosome dynamics by its inherent histone chaperone activity in yeast. Nat Commun 9(1):240.  https://doi.org/10.1038/s41467-017-02759-8 Google Scholar
  27. 27.
    Blanc RS, Richard S (2017) Arginine methylation: the coming of age. Mol Cell 65(1):8–24.  https://doi.org/10.1016/j.molcel.2016.11.003 Google Scholar
  28. 28.
    Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357.  https://doi.org/10.1038/nrg3173 Google Scholar
  29. 29.
    Mosammaparast N, Shi Y (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179.  https://doi.org/10.1146/annurev.biochem.78.070907.103946 Google Scholar
  30. 30.
    Wei FZ, Cao Z, Wang X, Wang H, Cai MY, Li T, Hattori N, Wang D, Du Y, Song B, Cao LL, Shen C, Wang L, Wang H, Yang Y, Xie D, Wang F, Ushijima T, Zhao Y, Zhu WG (2015) Epigenetic regulation of autophagy by the methyltransferase EZH2 through an MTOR-dependent pathway. Autophagy 11(12):2309–2322.  https://doi.org/10.1080/15548627.2015.1117734 Google Scholar
  31. 31.
    Tan JZ, Yan Y, Wang XX, Jiang Y, Xu HE (2014) EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol Sin 35(2):161–174.  https://doi.org/10.1038/aps.2013.161 Google Scholar
  32. 32.
    Liu TP, Hong YH, Tung KY, Yang PM (2016) In silico and experimental analyses predict the therapeutic value of an EZH2 inhibitor GSK343 against hepatocellular carcinoma through the induction of metallothionein genes. Oncoscience 3(1):9–20.  https://doi.org/10.18632/oncoscience.285 Google Scholar
  33. 33.
    Hsieh YY, Lo HL, Yang PM (2016) EZH2 inhibitors transcriptionally upregulate cytotoxic autophagy and cytoprotective unfolded protein response in human colorectal cancer cells. Am J Cancer Res 6(8):1661–1680Google Scholar
  34. 34.
    Sun Y, Jin L, Liu JH, Sui YX, Han LL, Shen XL (2016) Interfering EZH2 expression reverses the cisplatin resistance in human ovarian cancer by inhibiting autophagy. Cancer Biother Radiopharm 31(7):246–252.  https://doi.org/10.1089/cbr.2016.2034 Google Scholar
  35. 35.
    Wang Z, Liu H, Xu C (2018) Cellular senescence in the treatment of ovarian cancer. Int J Gynecol Cancer.  https://doi.org/10.1097/igc.0000000000001257 Google Scholar
  36. 36.
    Li R, Yi X, Wei X, Huo B, Guo X, Cheng C, Fang ZM, Wang J, Feng X, Zheng P, Su YS, Masau JF, Zhu XH, Jiang DS (2018) EZH2 inhibits autophagic cell death of aortic vascular smooth muscle cells to affect aortic dissection. Cell Death Dis 9(2):180.  https://doi.org/10.1038/s41419-017-0213-2 Google Scholar
  37. 37.
    Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120.  https://doi.org/10.1038/cdd.2011.96 Google Scholar
  38. 38.
    Shinkai Y (2007) Regulation and function of H3K9 methylation. Subcell Biochem 41:337–350Google Scholar
  39. 39.
    Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30(2):249–262.  https://doi.org/10.1038/emboj.2010.318 Google Scholar
  40. 40.
    Artal-Martinez de Narvajas A, Gomez TS, Zhang JS, Mann AO, Taoda Y, Gorman JA, Herreros-Villanueva M, Gress TM, Ellenrieder V, Bujanda L, Kim DH, Kozikowski AP, Koenig A, Billadeau DD (2013) Epigenetic regulation of autophagy by the methyltransferase G9a. Mol Cell Biol 33(20):3983–3993.  https://doi.org/10.1128/MCB.00813-13 Google Scholar
  41. 41.
    Collins PL, Oltz EM (2013) Histone methylation keeps the brakes on autophagy. Mol Cell Biol 33(20):3974–3975.  https://doi.org/10.1128/MCB.01033-13 Google Scholar
  42. 42.
    Morgan C, Hibben M, Esan O, John S, Patel V, Weiss HA, Murray RM, Hutchinson G, Gureje O, Thara R, Cohen A (2015) Searching for psychosis: INTREPID (1): systems for detecting untreated and first-episode cases of psychosis in diverse settings. Soc Psychiatry Psychiatr Epidemiol 50(6):879–893.  https://doi.org/10.1007/s00127-015-1013-6 Google Scholar
  43. 43.
    Li F, Zeng J, Gao Y, Guan Z, Ma Z, Shi Q, Du C, Jia J, Xu S, Wang X, Chang L, He D, Guo P (2015) G9a inhibition induces autophagic cell death via AMPK/mTOR pathway in bladder transitional cell carcinoma. PLoS One 10(9):e0138390.  https://doi.org/10.1371/journal.pone.0138390 Google Scholar
  44. 44.
    Ren A, Qiu Y, Cui H, Fu G (2015) Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma. Biochem Biophys Res Commun 459(1):10–17.  https://doi.org/10.1016/j.bbrc.2015.01.068 Google Scholar
  45. 45.
    Ke XX, Zhang D, Zhu S, Xia Q, Xiang Z, Cui H (2014) Inhibition of H3K9 methyltransferase G9a repressed cell proliferation and induced autophagy in neuroblastoma cells. PLoS One 9(9):e106962.  https://doi.org/10.1371/journal.pone.0106962 Google Scholar
  46. 46.
    Park SE, Yi HJ, Suh N, Park YY, Koh JY, Jeong SY, Cho DH, Kim CS, Hwang JJ (2016) Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-kappaB. Oncotarget 7(26):39796–39808.  https://doi.org/10.18632/oncotarget.9290 Google Scholar
  47. 47.
    Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20(3):341–348.  https://doi.org/10.1016/j.ceb.2008.03.019 Google Scholar
  48. 48.
    Ni P, Xu H, Chen C, Wang J, Liu X, Hu Y, Fan Q, Hou Z, Lu Y (2012) Serum starvation induces DRAM expression in liver cancer cells via histone modifications within its promoter locus. PLoS One 7(12):e50502.  https://doi.org/10.1371/journal.pone.0050502 Google Scholar
  49. 49.
    Rosenstein DI, Chiodo GT, Bartley MH (1991) Treating recurrent aphthous ulcers in patients with AIDS. J Am Dent Assoc 122(10):64, 67–68Google Scholar
  50. 50.
    Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y, Fan Y (2016) Upregulated SMYD3 promotes bladder cancer progression by targeting BCLAF1 and activating autophagy. Tumour Biol 37(6):7371–7381.  https://doi.org/10.1007/s13277-015-4410-2 Google Scholar
  51. 51.
    Fullgrabe J, Lynch-Day MA, Heldring N, Li W, Struijk RB, Ma Q, Hermanson O, Rosenfeld MG, Klionsky DJ, Joseph B (2013) The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 500(7463):468–471.  https://doi.org/10.1038/nature12313 Google Scholar
  52. 52.
    Wang Z, Long QY, Chen L, Fan JD, Wang ZN, Li LY, Wu M, Chen X (2017) Inhibition of H3K4 demethylation induces autophagy in cancer cell lines. Biochim Biophys Acta 1864 12:2428–2437.  https://doi.org/10.1016/j.bbamcr.2017.08.005 Google Scholar
  53. 53.
    Hong F, Wan L, Liu J, Huang K, Xiao Z, Zhang Y, Shi C (2018) Histone methylation regulates Hif-1 signaling cascade in activation of hepatic stellate cells. FEBS Open Bio 8(3):406–415.  https://doi.org/10.1002/2211-5463.12379 Google Scholar
  54. 54.
    Shin HJ, Kim H, Oh S, Lee JG, Kee M, Ko HJ, Kweon MN, Won KJ, Baek SH (2016) AMPK–SKP2–CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534(7608):553–557.  https://doi.org/10.1038/nature18014 Google Scholar
  55. 55.
    Selvi BR, Batta K, Kishore AH, Mantelingu K, Varier RA, Balasubramanyam K, Pradhan SK, Dasgupta D, Sriram S, Agrawal S, Kundu TK (2010) Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. J Biol Chem 285(10):7143–7152.  https://doi.org/10.1074/jbc.M109.063933 Google Scholar
  56. 56.
    Farooq Z, Banday S, Pandita TK, Altaf M (2016) The many faces of histone H3K79 methylation. Mutat Res Rev Mutat Res 768:46–52.  https://doi.org/10.1016/j.mrrev.2016.03.005 Google Scholar
  57. 57.
    Gao Y, Ge W (2018) The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis. Cell Death Dis 9(2):33.  https://doi.org/10.1038/s41419-017-0040-5 Google Scholar
  58. 58.
    Hoeflich KP, Gray DC, Eby MT, Tien JY, Wong L, Bower J, Gogineni A, Zha J, Cole MJ, Stern HM, Murray LJ, Davis DP, Seshagiri S (2006) Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res 66(2):999–1006.  https://doi.org/10.1158/0008-5472.CAN-05-2720 Google Scholar
  59. 59.
    Xu J, Wang AH, Oses-Prieto J, Makhijani K, Katsuno Y, Pei M, Yan L, Zheng YG, Burlingame A, Bruckner K, Derynck R (2013) Arginine methylation initiates BMP-induced smad signaling. Mol Cell 51(1):5–19.  https://doi.org/10.1016/j.molcel.2013.05.004 Google Scholar
  60. 60.
    Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16(1):5–17.  https://doi.org/10.1038/nrm3915 Google Scholar
  61. 61.
    Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35(3):161–168.  https://doi.org/10.1016/j.tibs.2009.10.002 Google Scholar
  62. 62.
    Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132.  https://doi.org/10.1146/annurev-cellbio-092910-154005 Google Scholar
  63. 63.
    Song H, Feng X, Zhang M, Jin X, Xu X, Wang L, Ding X, Luo Y, Lin F, Wu Q, Liang G, Yu T, Liu Q, Zhang Z (2018) Crosstalk between lysine methylation and phosphorylation of ATG16L1 dictates the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes. Autophagy 14(5):825–844.  https://doi.org/10.1080/15548627.2017.1389357 Google Scholar
  64. 64.
    Wen C, Xu M, Mo C, Cheng Z, Guo Q, Zhu X (2018) JMJD6 exerts function in neuropathic pain by regulating NFkappaB following peripheral nerve injury in rats. Int J Mol Med.  https://doi.org/10.3892/ijmm.2018.3613 Google Scholar
  65. 65.
    Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, Shi B, Lai CC, Bedford MT, Tsai CH, Hung MC (2011) Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol 13(2):174–181.  https://doi.org/10.1038/ncb2158 Google Scholar
  66. 66.
    Jiang H, Zhou Z, Jin S, Xu K, Zhang H, Xu J, Sun Q, Wang J, Xu J (2018) PRMT9 promotes hepatocellular carcinoma invasion and metastasis via activating PI3K/Akt/GSK-3beta/Snail signalling. Cancer Sci.  https://doi.org/10.1111/cas.13598 Google Scholar
  67. 67.
    Raposo AE, Piller SC (2018) Protein arginine methylation: an emerging regulator of the cell cycle. Cell Div 13:3.  https://doi.org/10.1186/s13008-018-0036-2 Google Scholar
  68. 68.
    Wils LJ, Bijlsma MF (2018) Epigenetic regulation of the Hedgehog and Wnt pathways in cancer. Crit Rev Oncol Hematol 121:23–44.  https://doi.org/10.1016/j.critrevonc.2017.11.013 Google Scholar
  69. 69.
    Nandy A, Lin L, Velentzas PD, Wu LP, Baehrecke EH, Silverman N (2018) The NF-kappaB factor relish regulates Atg1 expression and controls autophagy. Cell Rep 25(8):2110–2120 e2113.  https://doi.org/10.1016/j.celrep.2018.10.076 Google Scholar
  70. 70.
    Kretowski R, Borzym-Kluczyk M, Stypulkowska A, Branska-Januszewska J, Ostrowska H, Cechowska-Pasko M (2016) Low glucose dependent decrease of apoptosis and induction of autophagy in breast cancer MCF-7 cells. Mol Cell Biochem 417(1–2):35–47.  https://doi.org/10.1007/s11010-016-2711-4 Google Scholar
  71. 71.
    Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C (2009) p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 29(10):2594–2608.  https://doi.org/10.1128/MCB.01396-08 Google Scholar
  72. 72.
    Lim CB, Fu PY, Ky N, Zhu HS, Feng X, Li J, Srinivasan KG, Hamza MS, Zhao Y (2012) NF-kappaB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death. BMC Complement Altern Med 12:93.  https://doi.org/10.1186/1472-6882-12-93 Google Scholar
  73. 73.
    Verma N, Manna SK (2017) Advanced glycation end products (AGE) potentiates cell death in p53 negative cells via upregulaion of NF-kappa B and impairment of autophagy. J Cell Physiol 232(12):3598–3610.  https://doi.org/10.1002/jcp.25828 Google Scholar
  74. 74.
    Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51):6680–6684.  https://doi.org/10.1038/sj.onc.1209954 Google Scholar
  75. 75.
    Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, Cao D, Liao Q (2018) Role of the NFkappaB-signaling pathway in cancer. Onco Targets Ther 11:2063–2073.  https://doi.org/10.2147/OTT.S161109 Google Scholar
  76. 76.
    Ea CK, Baltimore D (2009) Regulation of NF-kappaB activity through lysine monomethylation of p65. Proc Natl Acad Sci USA 106(45):18972–18977.  https://doi.org/10.1073/pnas.0910439106 Google Scholar
  77. 77.
    Mukherjee N, Cardenas E, Bedolla R, Ghosh R (2017) SETD6 regulates NF-kappaB signaling in urothelial cell survival: implications for bladder cancer. Oncotarget 8(9):15114–15125.  https://doi.org/10.18632/oncotarget.14750 Google Scholar
  78. 78.
    Yuan ZL, Guan YJ, Wang L, Wei W, Kane AB, Chin YE (2004) Central role of the threonine residue within the p + 1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol 24(21):9390–9400.  https://doi.org/10.1128/MCB.24.21.9390-9400.2004 Google Scholar
  79. 79.
    Hu W, Lv J, Han M, Yang Z, Li T, Jiang S, Yang Y (2018) STAT3: the art of multi-tasking of metabolic and immune functions in obesity. Prog Lipid Res 70:17–28.  https://doi.org/10.1016/j.plipres.2018.04.002 Google Scholar
  80. 80.
    You L, Wang Z, Li H, Shou J, Jing Z, Xie J, Sui X, Pan H, Han W (2015) The role of STAT3 in autophagy. Autophagy 11(5):729–739.  https://doi.org/10.1080/15548627.2015.1017192 Google Scholar
  81. 81.
    Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, Ke J, Huang J, Yeung SC, Zhang H (2014) Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis 5:e1088.  https://doi.org/10.1038/cddis.2014.59 Google Scholar
  82. 82.
    Mazure NM, Pouyssegur J (2010) Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol 22(2):177–180.  https://doi.org/10.1016/j.ceb.2009.11.015 Google Scholar
  83. 83.
    Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I, Lee C, Joo KM, Rich JN, Nam DH, Lee J (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23(6):839–852.  https://doi.org/10.1016/j.ccr.2013.04.008 Google Scholar
  84. 84.
    Kong J, Kong F, Gao J, Zhang Q, Dong S, Gu F, Ke S, Pan B, Shen Q, Sun H, Zheng L, Sun W (2014) YC-1 enhances the anti-tumor activity of sorafenib through inhibition of signal transducer and activator of transcription 3 (STAT3) in hepatocellular carcinoma. Mol Cancer 13:7.  https://doi.org/10.1186/1476-4598-13-7 Google Scholar
  85. 85.
    Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83.  https://doi.org/10.1128/MMBR.00031-10 Google Scholar
  86. 86.
    Martinez-Lopez N, Singh R (2014) ATGs: scaffolds for MAPK/ERK signaling. Autophagy 10(3):535–537.  https://doi.org/10.4161/auto.27642 Google Scholar
  87. 87.
    Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J 277(1):2–21.  https://doi.org/10.1111/j.1742-4658.2009.07366.x Google Scholar
  88. 88.
    Andreu-Perez P, Esteve-Puig R, de Torre-Minguela C, Lopez-Fauqued M, Bech-Serra JJ, Tenbaum S, Garcia-Trevijano ER, Canals F, Merlino G, Avila MA, Recio JA (2011) Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. Sci Signal 4(190):ra58.  https://doi.org/10.1126/scisignal.2001936 Google Scholar
  89. 89.
    Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622.  https://doi.org/10.1016/j.cell.2009.04.050 Google Scholar
  90. 90.
    Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22(2):181–185.  https://doi.org/10.1016/j.ceb.2009.12.001 Google Scholar
  91. 91.
    Feng Z, Zhang H, Levine AJ, Jin S (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 102(23):8204–8209.  https://doi.org/10.1073/pnas.0502857102 Google Scholar
  92. 92.
    Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, Levine AJ (2007) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67(7):3043–3053.  https://doi.org/10.1158/0008-5472.CAN-06-4149 Google Scholar
  93. 93.
    Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460.  https://doi.org/10.1016/j.cell.2008.06.028 Google Scholar
  94. 94.
    Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268(10):2764–2772Google Scholar
  95. 95.
    Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D (2004) Regulation of p53 activity through lysine methylation. Nature 432(7015):353–360.  https://doi.org/10.1038/nature03117 Google Scholar
  96. 96.
    Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444(7119):629–632.  https://doi.org/10.1038/nature05287 Google Scholar
  97. 97.
    Fan JD, Lei PJ, Zheng JY, Wang X, Li S, Liu H, He YL, Wang ZN, Wei G, Zhang X, Li LY, Wu M (2015) The selective activation of p53 target genes regulated by SMYD2 in BIX-01294 induced autophagy-related cell death. PLoS One 10(1):e0116782.  https://doi.org/10.1371/journal.pone.0116782 Google Scholar
  98. 98.
    Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G (2008) Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10(6):676–687.  https://doi.org/10.1038/ncb1730 Google Scholar
  99. 99.
    Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T, Kroemer G (2008) Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 7(19):3056–3061.  https://doi.org/10.4161/cc.7.19.6751 Google Scholar
  100. 100.
    Carter S, Bischof O, Dejean A, Vousden KH (2007) C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 9(4):428–435.  https://doi.org/10.1038/ncb1562 Google Scholar
  101. 101.
    Venne AS, Kollipara L, Zahedi RP (2014) The next level of complexity: crosstalk of posttranslational modifications. Proteomics 14(4–5):513–524.  https://doi.org/10.1002/pmic.201300344 Google Scholar
  102. 102.
    Gu B, Zhu WG (2012) Surf the post-translational modification network of p53 regulation. Int J Biol Sci 8(5):672–684.  https://doi.org/10.7150/ijbs.4283 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory of Organ TransplantationMinistry of EducationWuhanChina
  3. 3.NHC Key Laboratory of Organ TransplantationMinistry of HealthWuhanChina
  4. 4.Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanChina

Personalised recommendations