Advertisement

Overlapping migratory mechanisms between neural progenitor cells and brain tumor stem cells

  • Natanael Zarco
  • Emily Norton
  • Alfredo Quiñones-Hinojosa
  • Hugo Guerrero-CázaresEmail author
Review

Abstract

Neural stem cells present in the subventricular zone (SVZ), the largest neurogenic niche of the mammalian brain, are able to self-renew as well as generate neural progenitor cells (NPCs). NPCs are highly migratory and traverse the rostral migratory stream (RMS) to the olfactory bulb, where they terminally differentiate into mature interneurons. NPCs from the SVZ are some of the few cells in the CNS that migrate long distances during adulthood. The migratory process of NPCs is highly regulated by intracellular pathway activation and signaling from the surrounding microenvironment. It involves modulation of cell volume, cytoskeletal rearrangement, and isolation from compact extracellular matrix. In malignant brain tumors including high-grade gliomas, there are cells called brain tumor stem cells (BTSCs) with similar stem cell characteristics to NPCs but with uncontrolled cell proliferation and contribute to tumor initiation capacity, tumor progression, invasion, and tumor maintenance. These BTSCs are resistant to chemotherapy and radiotherapy, and their presence is believed to lead to tumor recurrence at distal sites from the original tumor location, principally due to their high migratory capacity. BTSCs are able to invade the brain parenchyma by utilizing many of the migratory mechanisms used by NPCs. However, they have an increased ability to infiltrate the tight brain parenchyma and utilize brain structures such as myelin tracts and blood vessels as migratory paths. In this article, we summarize recent findings on the mechanisms of cellular migration that overlap between NPCs and BTSCs. A better understanding of the intersection between NPCs and BTSCs will to provide a better comprehension of the BTSCs’ invasive capacity and the molecular mechanisms that govern their migration and eventually lead to the development of new therapies to improve the prognosis of patients with malignant gliomas.

Keywords

Subventricular zone Neurogenesis Neural progenitor cells Brain tumors Brain tumor stem cells Migratory mechanisms 

Notes

Acknowledgements

Authors are funded by the NCI (R21CA199295, R01CA183827, R01CA195503, R01CA216855, R01CA200399, R43CA221490), NINDS (R03NS109444), Florida State Department of Health Research Grant, and the Mayo Clinic Graduate School. AQH is supported by the William J. and Charles H. Mayo Professorship and the Mayo Clinic Clinician Investigator.

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflict of interest regarding the publication of this article.

References

  1. 1.
    Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148CrossRefGoogle Scholar
  2. 2.
    Obernier K, Alvarez-Buylla A (2019) Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 146(4):dev156059CrossRefPubMedGoogle Scholar
  3. 3.
    Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17(13):5046–5061CrossRefPubMedGoogle Scholar
  4. 4.
    Sawamoto K et al (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761):629–632CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Del Bigio MR (2010) Ependymal cells: biology and pathology. Acta Neuropathol 119(1):55–73CrossRefPubMedGoogle Scholar
  6. 6.
    Johanson C et al (2011) The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol 39(1):186–212CrossRefPubMedGoogle Scholar
  7. 7.
    Mirzadeh Z et al (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shen Q et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304(5675):1338–1340CrossRefPubMedGoogle Scholar
  9. 9.
    Lim DA, Alvarez-Buylla A (2016) The Adult Ventricular-Subventricular Zone (V–SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 8(5):a018820CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ponti G et al (2013) Cell cycle and lineage progression of neural progenitors in the ventricular–subventricular zones of adult mice. Proc Natl Acad Sci USA 110(11):E1045–E1054CrossRefPubMedGoogle Scholar
  11. 11.
    Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271(5251):978–981CrossRefPubMedGoogle Scholar
  12. 12.
    Emsley JG, Hagg T (2003) alpha6beta1 integrin directs migration of neuronal precursors in adult mouse forebrain. Exp Neurol 183(2):273–285CrossRefPubMedGoogle Scholar
  13. 13.
    Martoncikova M et al (2014) Astrocytic and vascular scaffolding for neuroblast migration in the rostral migratory stream. Curr Neurovasc Res 11(4):321–329CrossRefPubMedGoogle Scholar
  14. 14.
    Musah-Eroje A, Watson S (2019) A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J Neurooncol 2019:1–10Google Scholar
  15. 15.
    Reeve RL et al (2017) Quiescent Oct4(+) neural stem cells (NSCs) repopulate ablated glial fibrillary acidic Protein(+) NSCs in the adult mouse brain. Stem Cells 35(9):2071–2082CrossRefPubMedGoogle Scholar
  16. 16.
    Buono KD et al (2012) Leukemia inhibitory factor is essential for subventricular zone neural stem cell and progenitor homeostasis as revealed by a novel flow cytometric analysis. Dev Neurosci 34(5):449–462CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim EJ et al (2011) Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One 6(3):e18472CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim JB et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136(3):411–419CrossRefGoogle Scholar
  19. 19.
    Wang J et al (2008) c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 3(11):e3769CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Riddick G et al (2017) A core regulatory circuit in glioblastoma stem cells links MAPK activation to a transcriptional program of neural stem cell identity. Sci Rep 7:43605CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefGoogle Scholar
  22. 22.
    Papapetrou EP (2016) Induced pluripotent stem cells, past and future. Science 353(6303):991–992CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35(5):865–875CrossRefPubMedGoogle Scholar
  24. 24.
    Mao XG et al (2009) Brain tumor stem-like cells identified by neural stem cell marker CD15. Transl Oncol 2(4):247–257CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brown DV et al (2017) Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity. PLoS One 12(2):e0172791CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Uchida N et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97(26):14720–14725CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ayanlaja AA et al (2017) Distinct features of doublecortin as a marker of neuronal migration and its implications in cancer cell mobility. Front Mol Neurosci 10:199CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Doetsch F et al (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36(6):1021–1034CrossRefPubMedGoogle Scholar
  30. 30.
    Pang LY, Saunders L, Argyle DJ (2017) Epidermal growth factor receptor activity is elevated in glioma cancer stem cells and is required to maintain chemotherapy and radiation resistance. Oncotarget 8(42):72494–72512CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Guichet P-O et al (2016) Asymmetric distribution of GFAP in glioma multipotent cells. PLoS One 11(3):e0151274CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu X et al (2006) GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54(5):394–410CrossRefPubMedGoogle Scholar
  33. 33.
    Iacopino F et al (2014) Isolation of cancer stem cells from three human glioblastoma cell lines: characterization of two selected clones. PLoS One 9(8):e105166CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kaneko Y et al (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22(1–2):139–153CrossRefPubMedGoogle Scholar
  35. 35.
    Jin X et al (2013) Cell surface Nestin is a biomarker for glioma stem cells. Biochem Biophys Res Commun 433(4):496–501CrossRefPubMedGoogle Scholar
  36. 36.
    Amoureux MC et al (2010) Polysialic acid neural cell adhesion molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines. BMC Cancer 10:91CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hutton SR, Pevny LH (2011) SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon. Dev Biol 352(1):40–47CrossRefPubMedGoogle Scholar
  38. 38.
    Song WS et al (2016) Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells. J Chin Med Assoc 79(10):538–545CrossRefPubMedGoogle Scholar
  39. 39.
    Khan Z et al (2013) The complexity of identifying cancer stem cell biomarkers. Cancer Invest 31(6):404–411CrossRefPubMedGoogle Scholar
  40. 40.
    Guerrero-Cazares H et al (2011) Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain. J Comp Neurol 519(6):1165–1180CrossRefPubMedGoogle Scholar
  41. 41.
    Sanai N et al (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478(7369):382–386CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Curtis MA et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315(5816):1243–1249CrossRefPubMedGoogle Scholar
  43. 43.
    Sanai N et al (2007) Comment on “Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension”. Science 318(5849):393 author reply 393 CrossRefPubMedGoogle Scholar
  44. 44.
    Quinones-Hinojosa A et al (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494(3):415–434CrossRefPubMedGoogle Scholar
  45. 45.
    Sanai N et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427(6976):740–744CrossRefPubMedGoogle Scholar
  46. 46.
    Capilla-Gonzalez V et al (2015) Regulation of subventricular zone-derived cells migration in the adult brain. Adv Exp Med Biol 853:1–21CrossRefPubMedGoogle Scholar
  47. 47.
    Quinones-Hinojosa A, Chaichana K (2007) The human subventricular zone: a source of new cells and a potential source of brain tumors. Exp Neurol 205(2):313–324CrossRefPubMedGoogle Scholar
  48. 48.
    Lee JH et al (2018) Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560(7717):243–247CrossRefPubMedGoogle Scholar
  49. 49.
    Ostrom QT et al (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20(suppl_4):iv1–iv86CrossRefPubMedGoogle Scholar
  50. 50.
    Wesseling P, Capper D (2018) WHO 2016 classification of gliomas. Neuropathol Appl Neurobiol 44(2):139–150CrossRefPubMedGoogle Scholar
  51. 51.
    Thakkar JP et al (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 23(10):1985–1996CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefGoogle Scholar
  53. 53.
    Osuka S, Van Meir EG (2017) Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 127(2):415–426CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lathia JD et al (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203–1217CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Parada LF, Dirks PB, Wechsler-Reya RJ (2017) Brain tumor stem cells remain in play. J Clin Oncol 35(21):2428–2431CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Schonberg DL et al (2014) Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Aspects Med 39:82–101CrossRefPubMedGoogle Scholar
  57. 57.
    Calabrese C et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82CrossRefPubMedGoogle Scholar
  58. 58.
    Silver DJ, Lathia JD (2018) Revealing the glioma cancer stem cell interactome, one niche at a time. J Pathol 244(3):260–264CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97(12):6242–6244CrossRefPubMedGoogle Scholar
  60. 60.
    Scherer HJ (1940) The forms of growth in gliomas and their practical significance. Brain 63(1):1–35CrossRefGoogle Scholar
  61. 61.
    Shiraki Y et al (2017) Significance of perivascular tumour cells defined by CD109 expression in progression of glioma. J Pathol 243(4):468–480CrossRefPubMedGoogle Scholar
  62. 62.
    Wang X et al (2018) Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell 22(4):514–528 e5CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760CrossRefPubMedGoogle Scholar
  64. 64.
    Smith CL et al (2016) Migration phenotype of brain-cancer cells predicts patient outcomes. Cell Rep 15(12):2616–2624CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kaneko N et al (2010) New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron 67(2):213–223CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Brown JP et al (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467(1):1–10CrossRefPubMedGoogle Scholar
  67. 67.
    Gleeson JG et al (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92(1):63–72CrossRefGoogle Scholar
  68. 68.
    Moores CA et al (2004) Mechanism of microtubule stabilization by doublecortin. Mol Cell 14(6):833–839CrossRefPubMedGoogle Scholar
  69. 69.
    Couillard-Despres S et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21(1):1–14CrossRefGoogle Scholar
  70. 70.
    Gleeson JG et al (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23(2):257–271CrossRefPubMedGoogle Scholar
  71. 71.
    Dobyns WB (2010) The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia 51(Suppl 1):5–9CrossRefPubMedGoogle Scholar
  72. 72.
    Shahsavani M et al (2018) An in vitro model of lissencephaly: expanding the role of DCX during neurogenesis. Mol Psychiatry 23(7):1674CrossRefPubMedGoogle Scholar
  73. 73.
    Filipovic R et al (2012) Increasing doublecortin expression promotes migration of human embryonic stem cell-derived neurons. Stem Cells 30(9):1852–1862CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ocbina PJ et al (2006) Doublecortin is necessary for the migration of adult subventricular zone cells from neurospheres. Mol Cell Neurosci 33(2):126–135CrossRefPubMedGoogle Scholar
  75. 75.
    Gdalyahu A et al (2004) DCX, a new mediator of the JNK pathway. EMBO J 23(4):823–832CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Jin J et al (2010) JNK phosphorylates Ser332 of doublecortin and regulates its function in neurite extension and neuronal migration. Dev Neurobiol 70(14):929–942CrossRefPubMedGoogle Scholar
  77. 77.
    Schaar BT, Kinoshita K, McConnell SK (2004) Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron 41(2):203–213CrossRefPubMedGoogle Scholar
  78. 78.
    Toriyama M et al (2012) Phosphorylation of doublecortin by protein kinase A orchestrates microtubule and actin dynamics to promote neuronal progenitor cell migration. J Biol Chem 287(16):12691–12702CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Daou MC et al (2005) Doublecortin is preferentially expressed in invasive human brain tumors. Acta Neuropathol 110(5):472–480CrossRefPubMedGoogle Scholar
  80. 80.
    Masui K et al (2008) Evaluation of sensitivity and specificity of doublecortin immunostatining for the detection of infiltrating glioma cells. Brain Tumor Pathol 25(1):1–7CrossRefPubMedGoogle Scholar
  81. 81.
    Santra M et al (2011) Effect of doublecortin on self-renewal and differentiation in brain tumor stem cells. Cancer Sci 102(7):1350–1357CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Tapon N, Hall A (1997) Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9(1):86–92CrossRefPubMedGoogle Scholar
  83. 83.
    Khodosevich K, Monyer H (2010) Signaling involved in neurite outgrowth of postnatally born subventricular zone neurons in vitro. BMC Neurosci 11:18CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Leong SY et al (2011) The Rho kinase pathway regulates mouse adult neural precursor cell migration. Stem Cells 29(2):332–343CrossRefPubMedGoogle Scholar
  85. 85.
    Ballester-Lurbe B et al (2015) RhoE deficiency alters postnatal subventricular zone development and the number of calbindin-expressing neurons in the olfactory bulb of mouse. Brain Struct Funct 220(6):3113–3130CrossRefPubMedGoogle Scholar
  86. 86.
    Ota H et al (2014) Speed control for neuronal migration in the postnatal brain by Gmip-mediated local inactivation of RhoA. Nat Commun 5:4532CrossRefPubMedGoogle Scholar
  87. 87.
    Wong K et al (2001) Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107(2):209–221CrossRefPubMedGoogle Scholar
  88. 88.
    Kwiatkowska A et al (2012) The small GTPase RhoG mediates glioblastoma cell invasion. Mol Cancer 11:65CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Danussi C et al (2013) RHPN2 drives mesenchymal transformation in malignant glioma by triggering RhoA activation. Cancer Res 73(16):5140–5150CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Hirata E et al (2012) In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion. J Cell Sci 125(Pt 4):858–868CrossRefPubMedGoogle Scholar
  91. 91.
    Fortin SP et al (2012) Cdc42 and the guanine nucleotide exchange factors Ect2 and trio mediate Fn14-induced migration and invasion of glioblastoma cells. Mol Cancer Res 10(7):958–968CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Franke TF et al (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81(5):727–736CrossRefGoogle Scholar
  93. 93.
    Stambolic V et al (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39CrossRefGoogle Scholar
  94. 94.
    Chen X et al (2015) Involvement of caspase-3/PTEN signaling pathway in isoflurane-induced decrease of self-renewal capacity of hippocampal neural precursor cells. Brain Res 1625:275–286CrossRefPubMedGoogle Scholar
  95. 95.
    Groszer M et al (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294(5549):2186–2189CrossRefPubMedGoogle Scholar
  96. 96.
    Ka M et al (2014) mTOR regulates brain morphogenesis by mediating GSK3 signaling. Development 141(21):4076–4086CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Peltier J, O’Neill A, Schaffer DV (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67(10):1348–1361CrossRefPubMedGoogle Scholar
  98. 98.
    Zhang Q et al (2011) BDNF promotes EGF-induced proliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Akt pathway. Molecules 16(12):10146–10156CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Choi JK et al (2014) Granulocyte macrophage colony-stimulating factor shows anti-apoptotic activity via the PI3K-NF-kappaB-HIF-1alpha-survivin pathway in mouse neural progenitor cells. Mol Neurobiol 49(2):724–733CrossRefPubMedGoogle Scholar
  100. 100.
    Li L et al (2002) PTEN in neural precursor cells: regulation of migration, apoptosis, and proliferation. Mol Cell Neurosci 20(1):21–29CrossRefPubMedGoogle Scholar
  101. 101.
    Lachyankar MB et al (2000) A role for nuclear PTEN in neuronal differentiation. J Neurosci 20(4):1404–1413CrossRefPubMedGoogle Scholar
  102. 102.
    Li L et al (2008) Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells 26(8):2193–2200CrossRefPubMedGoogle Scholar
  103. 103.
    Meng X et al (2011) PI3K mediated electrotaxis of embryonic and adult neural progenitor cells in the presence of growth factors. Exp Neurol 227(1):210–217CrossRefPubMedGoogle Scholar
  104. 104.
    Katakowski M et al (2003) Phosphoinositide 3-kinase promotes adult subventricular neuroblast migration after stroke. J Neurosci Res 74(4):494–501CrossRefPubMedGoogle Scholar
  105. 105.
    Kong X et al (2016) Tetramethylpyrazine promotes migration of neural precursor cells via activating the phosphatidylinositol 3-kinase pathway. Mol Neurobiol 53(9):6526–6539CrossRefPubMedGoogle Scholar
  106. 106.
    Joy AM et al (2003) Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J Cell Sci 116(Pt 21):4409–4417CrossRefPubMedGoogle Scholar
  107. 107.
    Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96(8):4240–4245CrossRefPubMedGoogle Scholar
  108. 108.
    Gu JJ et al (2018) Suppression of microRNA-130b inhibits glioma cell proliferation and invasion, and induces apoptosis by PTEN/AKT signaling. Int J Mol Med 41(1):284–292PubMedGoogle Scholar
  109. 109.
    Jaraiz-Rodriguez M et al (2017) A short region of Connexin43 reduces human glioma stem cell migration, invasion, and survival through Src, PTEN, and FAK. Stem Cell Reports 9(2):451–463CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Pan S et al (2018) Decreased expression of ARHGAP15 promotes the development of colorectal cancer through PTEN/AKT/FOXO1 axis. Cell Death Dis 9(6):673CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Kuan CY et al (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22(4):667–676CrossRefPubMedGoogle Scholar
  112. 112.
    Xu D et al (2014) Microcephaly-associated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex. Cell Rep 6(1):104–116CrossRefPubMedGoogle Scholar
  113. 113.
    Hirai S et al (2006) The c-Jun N-terminal kinase activator dual leucine zipper kinase regulates axon growth and neuronal migration in the developing cerebral cortex. J Neurosci 26(46):11992–12002CrossRefPubMedGoogle Scholar
  114. 114.
    Kawauchi T et al (2003) The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J 22(16):4190–4201CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Wang X et al (2007) Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death. Mol Cell Biol 27(22):7935–7946CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Yamasaki T et al (2011) Stress-activated protein kinase MKK7 regulates axon elongation in the developing cerebral cortex. J Neurosci 31(46):16872–16883CrossRefPubMedGoogle Scholar
  117. 117.
    Zhang F et al (2016) A Novel c-Jun N-terminal Kinase (JNK) signaling complex involved in neuronal migration during brain development. J Biol Chem 291(22):11466–11475CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Westerlund N et al (2011) Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate. Nat Neurosci 14(3):305–313CrossRefPubMedGoogle Scholar
  119. 119.
    Zhou X et al (2012) FRK controls migration and invasion of human glioma cells by regulating JNK/c-Jun signaling. J Neurooncol 110(1):9–19CrossRefPubMedGoogle Scholar
  120. 120.
    Okada M et al (2014) JNK contributes to temozolomide resistance of stem-like glioblastoma cells via regulation of MGMT expression. Int J Oncol 44(2):591–599CrossRefPubMedGoogle Scholar
  121. 121.
    Zhao HF et al (2016) PI3K p110beta isoform synergizes with JNK in the regulation of glioblastoma cell proliferation and migration through Akt and FAK inhibition. J Exp Clin Cancer Res 35:78CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3(9):715–727CrossRefPubMedGoogle Scholar
  123. 123.
    Vidal Perez-Trevino GS (2011) NKCC1 cotransporters: keeping an ‘ion’ them. J Physiol 589(Pt 4):781–782CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Young SZ et al (2012) NKCC1 knockdown decreases neuron production through GABA(A)-regulated neural progenitor proliferation and delays dendrite development. J Neurosci 32(39):13630–13638CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Mejia-Gervacio S, Murray K, Lledo PM (2011) NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain. Neural Dev 6:4CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Watkins S, Sontheimer H (2011) Hydrodynamic cellular volume changes enable glioma cell invasion. J Neurosci 31(47):17250–17259CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Garzon-Muvdi T et al (2012) Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation. PLoS Biol 10(5):e1001320CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Haas BR et al (2011) With-No-Lysine Kinase 3 (WNK3) stimulates glioma invasion by regulating cell volume. Am J Physiol Cell Physiol 301(5):C1150–C1160CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Schiapparelli P et al (2017) NKCC1 regulates migration ability of glioblastoma cells by modulation of actin dynamics and interacting with cofilin. EBioMedicine 21:94–103CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Kondapalli KC, Prasad H, Rao R (2014) An inside job: how endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front Cell Neurosci 8:172CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Kondapalli KC et al (2015) A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun 6:6289CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Gomez Zubieta DM et al (2017) MicroRNA-135a regulates NHE9 to inhibit proliferation and migration of glioblastoma cells. Cell Commun Signal 15(1):55CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Smith DS, Greer PL, Tsai LH (2001) Cdk5 on the brain. Cell Growth Differ 12(6):277–283PubMedGoogle Scholar
  134. 134.
    Ohshima T et al (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93(20):11173–11178CrossRefPubMedGoogle Scholar
  135. 135.
    Chae T et al (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18(1):29–42CrossRefPubMedGoogle Scholar
  136. 136.
    Hirasawa M et al (2004) Perinatal abrogation of Cdk5 expression in brain results in neuronal migration defects. Proc Natl Acad Sci USA 101(16):6249–6254CrossRefPubMedGoogle Scholar
  137. 137.
    Hirota Y et al (2007) Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone. J Neurosci 27(47):12829–12838CrossRefPubMedGoogle Scholar
  138. 138.
    Yushan R et al (2015) Insights into the clinical value of cyclin-dependent kinase 5 in glioma: a retrospective study. World J Surg Oncol 13:223CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    An JH et al (2009) Identification of gliotropic factors that induce human stem cell migration to malignant tumor. J Proteome Res 8(6):2873–2881CrossRefPubMedGoogle Scholar
  140. 140.
    Klein R (2001) Excitatory Eph receptors and adhesive ephrin ligands. Curr Opin Cell Biol 13(2):196–203CrossRefPubMedGoogle Scholar
  141. 141.
    Conover JC et al (2000) Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 3(11):1091–1097CrossRefPubMedGoogle Scholar
  142. 142.
    Ricard J et al (2006) EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Mol Cell Neurosci 31(4):713–722CrossRefPubMedGoogle Scholar
  143. 143.
    Todd KL et al (2017) EphA4 regulates neuroblast and astrocyte organization in a neurogenic Niche. J Neurosci 37(12):3331–3341CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Katakowski M et al (2005) EphB2 induces proliferation and promotes a neuronal fate in adult subventricular neural precursor cells. Neurosci Lett 385(3):204–209CrossRefPubMedGoogle Scholar
  145. 145.
    Steinecke A et al (2014) EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Development 141(2):460–471CrossRefPubMedGoogle Scholar
  146. 146.
    Nakada M et al (2010) The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int J Cancer 126(5):1155–1165PubMedPubMedCentralGoogle Scholar
  147. 147.
    Nakada M et al (2004) The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res 64(9):3179–3185CrossRefPubMedGoogle Scholar
  148. 148.
    Nakada M et al (2006) Ephrin-B3 ligand promotes glioma invasion through activation of Rac1. Cancer Res 66(17):8492–8500CrossRefPubMedGoogle Scholar
  149. 149.
    Sikkema AH et al (2012) EphB2 activity plays a pivotal role in pediatric medulloblastoma cell adhesion and invasion. Neuro Oncol 14(9):1125–1135CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Krusche B et al (2016) EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. Elife 5:e14845CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Teng L et al (2013) Ligand-dependent EphB1 signaling suppresses glioma invasion and correlates with patient survival. Neuro Oncol 15(12):1710–1720CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Liu XS et al (2008) Functional response to SDF1 alpha through over-expression of CXCR152 on adult subventricular zone progenitor cells. Brain Res 1226:18–26CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Kokovay E et al (2010) Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR153 signaling. Cell Stem Cell 7(2):163–173CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Jin K et al (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24(1):171–189CrossRefPubMedGoogle Scholar
  155. 155.
    Salman H, Ghosh P, Kernie SG (2004) Subventricular zone neural stem cells remodel the brain following traumatic injury in adult mice. J Neurotrauma 21(3):283–292CrossRefPubMedGoogle Scholar
  156. 156.
    Imitola J et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101(52):18117–18122CrossRefPubMedGoogle Scholar
  157. 157.
    Robin AM et al (2006) Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab 26(1):125–134CrossRefPubMedGoogle Scholar
  158. 158.
    Itoh T et al (2009) The relationship between SDF-1alpha/CXCR158 and neural stem cells appearing in damaged area after traumatic brain injury in rats. Neurol Res 31(1):90–102CrossRefPubMedGoogle Scholar
  159. 159.
    Mao W et al (2016) CXCL12/CXCR159 axis improves migration of neuroblasts along corpus callosum by stimulating MMP-2 secretion after traumatic brain injury in rats. Neurochem Res 41(6):1315–1322CrossRefPubMedGoogle Scholar
  160. 160.
    Saha B et al (2013) Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem Cell Res 11(3):965–977CrossRefPubMedGoogle Scholar
  161. 161.
    Zhu M et al (2015) Human cerebrospinal fluid regulates proliferation and migration of stem cells through insulin-like growth factor-1. Stem Cells Dev 24(2):160–171CrossRefPubMedGoogle Scholar
  162. 162.
    do Carmo A et al (2010) CXCL12/CXCR1 promotes motility and proliferation of glioma cells. Cancer Biol Ther 9(1):56–65CrossRefPubMedGoogle Scholar
  163. 163.
    Gatti M et al (2013) Inhibition of CXCL12/CXCR163 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity. Toxicology 314(2–3):209–220CrossRefPubMedGoogle Scholar
  164. 164.
    Wang S et al (2014) CXCL12-induced upregulation of FOXM1 expression promotes human glioblastoma cell invasion. Biochem Biophys Res Commun 447(1):1–6CrossRefPubMedGoogle Scholar
  165. 165.
    Goffart N et al (2015) Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR165 signaling. Neuro Oncol 17(1):81–94CrossRefPubMedGoogle Scholar
  166. 166.
    Gravina GL et al (2017) The novel CXCR166 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models. Tumour Biol 39(6):1010428317695528CrossRefPubMedGoogle Scholar
  167. 167.
    Andrews WD, Barber M, Parnavelas JG (2007) Slit-Robo interactions during cortical development. J Anat 211(2):188–198CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Wu W et al (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400(6742):331–336CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Nguyen-Ba-Charvet KT et al (2004) Multiple roles for slits in the control of cell migration in the rostral migratory stream. J Neurosci 24(6):1497–1506CrossRefPubMedGoogle Scholar
  170. 170.
    Guerrero-Cazares H et al (2017) Brief report: Robo1 regulates the migration of human subventricular zone neural progenitor cells during development. Stem Cells 35(7):1860–1865CrossRefPubMedGoogle Scholar
  171. 171.
    Dallol A et al (2003) Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene 22(29):4611–4616CrossRefPubMedGoogle Scholar
  172. 172.
    Astuti D et al (2004) SLIT2 promoter methylation analysis in neuroblastoma, Wilms’ tumour and renal cell carcinoma. Br J Cancer 90(2):515–521CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Yiin JJ et al (2009) Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity. Neuro Oncol 11(6):779–789CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Mertsch S et al (2008) Slit2 involvement in glioma cell migration is mediated by Robo1 receptor. J Neurooncol 87(1):1–7CrossRefPubMedGoogle Scholar
  175. 175.
    Xu Y et al (2010) Slit2/Robo1 signaling in glioma migration and invasion. Neurosci Bull 26(6):474–478CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Casazza A, Fazzari P, Tamagnone L (2007) Semaphorin signals in cell adhesion and cell migration: functional role and molecular mechanisms. Adv Exp Med Biol 600:90–108CrossRefPubMedGoogle Scholar
  177. 177.
    Melendez-Herrera E et al (2008) Semaphorin-3A and its receptor neuropilin-1 are predominantly expressed in endothelial cells along the rostral migratory stream of young and adult mice. Cell Tissue Res 333(2):175–184CrossRefPubMedGoogle Scholar
  178. 178.
    Kong Y et al (2016) Structural basis for Plexin activation and regulation. Neuron 91(3):548–560CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Falk J et al (2005) Dual functional activity of semaphorin 3B is required for positioning the anterior commissure. Neuron 48(1):63–75CrossRefPubMedGoogle Scholar
  180. 180.
    Tamamaki N et al (2003) Evidence that Sema3A and Sema3F regulate the migration of GABAergic neurons in the developing neocortex. J Comp Neurol 455(2):238–248CrossRefPubMedGoogle Scholar
  181. 181.
    Andrews WD et al (2016) Altered proliferative ability of neuronal progenitors in PlexinA1 mutant mice. J Comp Neurol 524(3):518–534CrossRefPubMedGoogle Scholar
  182. 182.
    Hirschberg A et al (2010) Gene deletion mutants reveal a role for semaphorin receptors of the plexin-B family in mechanisms underlying corticogenesis. Mol Cell Biol 30(3):764–780CrossRefPubMedGoogle Scholar
  183. 183.
    Sun T, Li W, Ling S (2016) miR-30c and semaphorin 3A determine adult neurogenesis by regulating proliferation and differentiation of stem cells in the subventricular zones of mouse. Cell Prolif 49(3):270–280CrossRefPubMedGoogle Scholar
  184. 184.
    Saha B et al (2012) Plexin-B2 regulates the proliferation and migration of neuroblasts in the postnatal and adult subventricular zone. J Neurosci 32(47):16892–16905CrossRefPubMedGoogle Scholar
  185. 185.
    Man J et al (2014) Sema3C promotes the survival and tumorigenicity of glioma stem cells through Rac1 activation. Cell Rep 9(5):1812–1826CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Bagci T et al (2009) Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene 28(40):3537–3550CrossRefPubMedGoogle Scholar
  187. 187.
    Zhou X et al (2012) Effects of SEMA3G on migration and invasion of glioma cells. Oncol Rep 28(1):269–275PubMedGoogle Scholar
  188. 188.
    Behar TN et al (1997) Neurotrophins stimulate chemotaxis of embryonic cortical neurons. Eur J Neurosci 9(12):2561–2570CrossRefPubMedGoogle Scholar
  189. 189.
    Ohmiya M et al (2001) Administration of FGF-2 to embryonic mouse brain induces hydrocephalic brain morphology and aberrant differentiation of neurons in the postnatal cerebral cortex. J Neurosci Res 65(3):228–235CrossRefPubMedGoogle Scholar
  190. 190.
    Fukumitsu H et al (2006) Brain-derived neurotrophic factor participates in determination of neuronal laminar fate in the developing mouse cerebral cortex. J Neurosci 26(51):13218–13230CrossRefPubMedGoogle Scholar
  191. 191.
    Chiaramello S et al (2007) BDNF/TrkB interaction regulates migration of SVZ precursor cells via PI3-K and MAP-K signalling pathways. Eur J Neurosci 26(7):1780–1790CrossRefPubMedGoogle Scholar
  192. 192.
    Petridis AK, El Maarouf A (2011) Brain-derived neurotrophic factor levels influence the balance of migration and differentiation of subventricular zone cells, but not guidance to the olfactory bulb. J Clin Neurosci 18(2):265–270CrossRefPubMedGoogle Scholar
  193. 193.
    Xiong J et al (2015) Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues. Oncol Lett 10(1):223–227CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Johnston AL et al (2007) The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biol 5(8):e212CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Xiong J et al (2013) Mature BDNF promotes the growth of glioma cells in vitro. Oncol Rep 30(6):2719–2724CrossRefPubMedGoogle Scholar
  196. 196.
    Lawn S et al (2015) Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J Biol Chem 290(6):3814–3824CrossRefGoogle Scholar
  197. 197.
    Li YS et al (1990) Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity. Science 250(4988):1690–1694CrossRefPubMedGoogle Scholar
  198. 198.
    Rauvala H, Pihlaskari R (1987) Isolation and some characteristics of an adhesive factor of brain that enhances neurite outgrowth in central neurons. J Biol Chem 262(34):16625–16635PubMedGoogle Scholar
  199. 199.
    Maeda N, Noda M (1998) Involvement of receptor-like protein tyrosine phosphatase zeta/RPTPbeta and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. J Cell Biol 142(1):203–216CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Qin EY et al (2017) Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma. Cell 170(5):845–859.e19CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Zhang L et al (2004) Overexpression of heparin-binding growth-associated molecule in malignant glioma cells. Neurol Med Chir (Tokyo) 44(12):637–643 discussion 644–5 CrossRefGoogle Scholar
  202. 202.
    Mentlein R, Held-Feindt J (2002) Pleiotrophin, an angiogenic and mitogenic growth factor, is expressed in human gliomas. J Neurochem 83(4):747–753CrossRefPubMedGoogle Scholar
  203. 203.
    Ma J et al (2014) Co-expression of midkine and pleiotrophin predicts poor survival in human glioma. J Clin Neurosci 21(11):1885–1890CrossRefPubMedGoogle Scholar
  204. 204.
    Zhang L et al (2015) Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas. Sci Signal 8(406):ra125CrossRefPubMedGoogle Scholar
  205. 205.
    Koyama-Nasu R et al (2014) The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells. Oncogene 33(17):2236–2244CrossRefPubMedGoogle Scholar
  206. 206.
    Powers C et al (2002) Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem 277(16):14153–14158CrossRefPubMedGoogle Scholar
  207. 207.
    Ulbricht U et al (2003) Expression and function of the receptor protein tyrosine phosphatase zeta and its ligand pleiotrophin in human astrocytomas. J Neuropathol Exp Neurol 62(12):1265–1275CrossRefPubMedGoogle Scholar
  208. 208.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Belvindrah R et al (2007) Beta1 integrins control the formation of cell chains in the adult rostral migratory stream. J Neurosci 27(10):2704–2717CrossRefPubMedGoogle Scholar
  210. 210.
    Jacques TS et al (1998) Neural precursor cell chain migration and division are regulated through different beta1 integrins. Development 125(16):3167–3177PubMedGoogle Scholar
  211. 211.
    Flanagan LA et al (2006) Regulation of human neural precursor cells by laminin and integrins. J Neurosci Res 83(5):845–856CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Alfonso J et al (2015) Downregulation of sphingosine 1-phosphate receptor 1 promotes the switch from tangential to radial migration in the OB. J Neurosci 35(40):13659–13672CrossRefPubMedGoogle Scholar
  213. 213.
    Lathia JD et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6(5):421–432CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Ying M et al (2014) Kruppel-like factor-9 (KLF9) inhibits glioblastoma stemness through global transcription repression and integrin alpha6 inhibition. J Biol Chem 289(47):32742–32756CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Blandin AF et al (2016) Glioma cell dispersion is driven by alpha5 integrin-mediated cell-matrix and cell-cell interactions. Cancer Lett 376(2):328–338CrossRefPubMedGoogle Scholar
  216. 216.
    Haas TL et al (2017) Integrin alpha7 is a functional marker and potential therapeutic target in glioblastoma. Cell Stem Cell 21(1):35–50 e9CrossRefPubMedGoogle Scholar
  217. 217.
    Tilghman J et al (2016) Regulation of glioblastoma tumor-propagating cells by the integrin partner tetraspanin CD151. Neoplasia 18(3):185–198CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Zhou P et al (2015) CD151-alpha3beta1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion. Oncotarget 6(30):29675–29693CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Liu Z et al (2016) EGFRvIII/integrin beta3 interaction in hypoxic and vitronectinenriching microenvironment promote GBM progression and metastasis. Oncotarget 7(4):4680–4694PubMedPubMedCentralGoogle Scholar
  220. 220.
    Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11(7):502–514CrossRefPubMedGoogle Scholar
  221. 221.
    Porlan E et al (2014) MT5-MMP regulates adult neural stem cell functional quiescence through the cleavage of N-cadherin. Nat Cell Biol 16(7):629–638CrossRefPubMedGoogle Scholar
  222. 222.
    Yagita Y et al (2009) N-cadherin mediates interaction between precursor cells in the subventricular zone and regulates further differentiation. J Neurosci Res 87(15):3331–3342CrossRefPubMedGoogle Scholar
  223. 223.
    Fujikake K et al (2018) Detachment of chain-forming neuroblasts by Fyn-mediated control of cell–cell adhesion in the postnatal brain. J Neurosci 38(19):4598–4609CrossRefPubMedGoogle Scholar
  224. 224.
    Klingener M et al (2014) N-cadherin promotes recruitment and migration of neural progenitor cells from the SVZ neural stem cell niche into demyelinated lesions. J Neurosci 34(29):9590–9606CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Cao L et al (2015) Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion. Stem Cell Rev 11(1):75–86CrossRefPubMedGoogle Scholar
  226. 226.
    Kim MY et al (2010) Bone morphogenetic protein 4 stimulates attachment of neurospheres and astrogenesis of neural stem cells in neurospheres via phosphatidylinositol 3 kinase-mediated upregulation of N-cadherin. Neuroscience 170(1):8–15CrossRefPubMedGoogle Scholar
  227. 227.
    Chen D et al (2015) E-cadherin maintains the activity of neural stem cells and inhibits the migration. Int J Clin Exp Pathol 8(11):14247–14251PubMedPubMedCentralGoogle Scholar
  228. 228.
    Schulte JD et al (2013) Cadherin-11 regulates motility in normal cortical neural precursors and glioblastoma. PLoS One 8(8):e70962CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142CrossRefPubMedGoogle Scholar
  230. 230.
    Utsuki S et al (2002) Relationship between the expression of E-, N-cadherins and beta-catenin and tumor grade in astrocytomas. J Neurooncol 57(3):187–192CrossRefPubMedGoogle Scholar
  231. 231.
    Noh MG et al (2017) Prognostic significance of E-cadherin and N-cadherin expression in Gliomas. BMC Cancer 17(1):583CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Kaur H et al (2012) Cadherin-11, a marker of the mesenchymal phenotype, regulates glioblastoma cell migration and survival in vivo. Mol Cancer Res 10(3):293–304CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Rutishauser U et al (1988) The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 240(4848):53–57CrossRefPubMedGoogle Scholar
  234. 234.
    Cunningham BA et al (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236(4803):799–806CrossRefPubMedGoogle Scholar
  235. 235.
    Seki T, Arai Y (1993) Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci 13(6):2351–2358CrossRefPubMedGoogle Scholar
  236. 236.
    Finne J et al (1983) Occurrence of alpha 2-8 linked polysialosyl units in a neural cell adhesion molecule. Biochem Biophys Res Commun 112(2):482–487CrossRefPubMedGoogle Scholar
  237. 237.
    Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93(25):14895–14900CrossRefPubMedGoogle Scholar
  238. 238.
    Tomasiewicz H et al (1993) Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11(6):1163–1174CrossRefPubMedGoogle Scholar
  239. 239.
    Cremer H et al (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367(6462):455–459CrossRefGoogle Scholar
  240. 240.
    Ono K et al (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13(3):595–609CrossRefPubMedGoogle Scholar
  241. 241.
    Hu H et al (1996) The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 16(4):735–743CrossRefPubMedGoogle Scholar
  242. 242.
    Rockle I, Hildebrandt H (2016) Deficits of olfactory interneurons in polysialyltransferase- and NCAM-deficient mice. Dev Neurobiol 76(4):421–433CrossRefPubMedGoogle Scholar
  243. 243.
    Battista D, Rutishauser U (2010) Removal of polysialic acid triggers dispersion of subventricularly derived neuroblasts into surrounding CNS tissues. J Neurosci 30(11):3995–4003CrossRefPubMedGoogle Scholar
  244. 244.
    Figarella-Branger DF, Durbec PL, Rougon GN (1990) Differential spectrum of expression of neural cell adhesion molecule isoforms and L1 adhesion molecules on human neuroectodermal tumors. Cancer Res 50(19):6364–6370PubMedGoogle Scholar
  245. 245.
    Figarella-Branger D et al (1992) Expression of adhesion molecules N. CAM, L1 and HNK1 epitope by medulloblastoma. Rev Neurol Paris 148(6–7):417–422PubMedGoogle Scholar
  246. 246.
    Petridis AK et al (2009) Polysialic acid overexpression in malignant astrocytomas. Acta Neurochir (Wien) 151(6):601–603 (discussion 603-4) CrossRefGoogle Scholar
  247. 247.
    Suzuki M et al (2005) Polysialic acid facilitates tumor invasion by glioma cells. Glycobiology 15(9):887–894CrossRefPubMedGoogle Scholar
  248. 248.
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Kang SS et al (2008) Inhibition of matrix metalloproteinase-9 attenuated neural progenitor cell migration after photothrombotic ischemia. Brain Res 1228:20–26CrossRefPubMedGoogle Scholar
  250. 250.
    Lee SR et al (2006) Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci 26(13):3491–3495CrossRefPubMedGoogle Scholar
  251. 251.
    Kanemitsu M et al (2017) EMMPRIN overexpression in SVZ neural progenitor cells increases their migration towards ischemic cortex. Exp Neurol 297:14–24CrossRefPubMedGoogle Scholar
  252. 252.
    Bovetti S et al (2007) Subventricular zone-derived neuroblast migration to the olfactory bulb is modulated by matrix remodelling. Eur J Neurosci 25(7):2021–2033CrossRefPubMedGoogle Scholar
  253. 253.
    Lin KT et al (2008) Ephrin-B2-induced cleavage of EphB2 receptor is mediated by matrix metalloproteinases to trigger cell repulsion. J Biol Chem 283(43):28969–28979CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Forsyth PA et al (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79(11–12):1828–1835CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Nan Y et al (2010) MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res 1359:14–21CrossRefPubMedGoogle Scholar
  256. 256.
    Sun L et al (2011) MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res 1389:9–18CrossRefGoogle Scholar
  257. 257.
    Zheng X et al (2013) MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 and MMP-3. Cancer Lett 329(2):146–154CrossRefPubMedGoogle Scholar
  258. 258.
    Lakka SS et al (2004) Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23(27):4681–4689CrossRefPubMedGoogle Scholar
  259. 259.
    Inoue A et al (2010) Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. Int J Oncol 37(5):1121–1131PubMedGoogle Scholar
  260. 260.
    Lathia JD et al (2011) Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS One 6(9):e24807CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Vakoc BJ et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–1223CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Guerrero-Cazares H, Chaichana KL, Quinones-Hinojosa A (2009) Neurosphere culture and human organotypic model to evaluate brain tumor stem cells. Methods Mol Biol 568:73–83CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Ohnishi T et al (1998) A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res 58(14):2935–2940PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurologic SurgeryMayo ClinicJacksonvilleUSA
  2. 2.Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleUSA
  3. 3.Department of NeuroscienceMayo ClinicJacksonvilleUSA

Personalised recommendations