Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 22, pp 4551–4568 | Cite as

CNDP1 knockout in zebrafish alters the amino acid metabolism, restrains weight gain, but does not protect from diabetic complications

  • Felix Schmöhl
  • Verena Peters
  • Claus Peter Schmitt
  • Gernot Poschet
  • Michael Büttner
  • Xiaogang Li
  • Tim Weigand
  • Tanja Poth
  • Nadine Volk
  • Jakob Morgenstern
  • Thomas Fleming
  • Peter P. Nawroth
  • Jens KrollEmail author
Original Article

Abstract

The gene CNDP1 was associated with the development of diabetic nephropathy. Its enzyme carnosinase 1 (CN1) primarily hydrolyzes the histidine-containing dipeptide carnosine but other organ and metabolic functions are mainly unknown. In our study we generated CNDP1 knockout zebrafish, which showed strongly decreased CN1 activity and increased intracellular carnosine levels. Vasculature and kidneys of CNDP1/ zebrafish were not affected, except for a transient glomerular alteration. Amino acid profiling showed a decrease of certain amino acids in CNDP1/ zebrafish, suggesting a specific function for CN1 in the amino acid metabolisms. Indeed, we identified a CN1 activity for Ala–His and Ser–His. Under diabetic conditions increased carnosine levels in CNDP1/ embryos could not protect from respective organ alterations. Although, weight gain through overfeeding was restrained by CNDP1 loss. Together, zebrafish exhibits CN1 functions, while CNDP1 knockout alters the amino acid metabolism, attenuates weight gain but cannot protect organs from diabetic complications.

Keywords

Amino acids Carnosinase1 Carnosine CRISPR/Cas Diabetes Diabetic nephropathy Metabolism Mutagenesis Zebrafish 

Abbreviations

CARNS1

Carnosine synthase

CN1

Carnosinase1 (enzyme)

CNDP1

Carnosinase1 (gene)

CN2

Carnosinase2 (enzyme)

CNDP2

Carnosinase2 (gene)

DN

Diabetic nephropathy

MG

Methylglyoxal

pdx1

Pancreas and duodenal homeobox 1

Notes

Acknowledgements

The study was supported by grants from Deutsche Forschungsgemeinschaft (CRC 1118 and IRTG 1874/2 DIAMICOM). We thank the Metabolomics Core Technology Platform of the Excellence cluster “CellNetworks” (University of Heidelberg) and the Deutsche Forschungsgemeinschaft (Grant ZUK 40/2010-3009262) for support with UPLC-based metabolite quantification. We acknowledge the support of the Core Facility Live Cell Imaging (DFG INST 91027/10-1 FUGG).

Author contributions

FS: conceived and designed the analysis; data collection; contribution of data or analysis tools; performed the analysis (mutant generation, fish work, phenotyping of the mutants); wrote the paper; critical revision of the paper; data analysis and interpretation; final approval of the version to publish. VP: conceived and designed the analysis; data collection; contribution of data or analysis tools; performed the analysis (CN1 activity, carnosine and anserine determinations, western blot); critical revision of the paper; data analysis and interpretation; final approval of the version to publish. CPS: conceived and designed the analysis; contribution of data or analysis tools; critical revision of the paper; data analysis and interpretation; final approval of the version to publish. GP: data collection; contribution of data or analysis tools; performed the analysis (metabolomic analysis); critical revision of the paper; final approval of the version to publish. MB: data collection; contribution of data or analysis tools; performed the analysis (metabolomic analysis); critical revision of the paper; final approval of the version to publish. XL: data collection; contribution of data or analysis tools; performed the analysis (fish work); critical revision of the paper; final approval of the version to publish. TW: data collection; contribution of data or analysis tools’; performed the analysis (western blot); critical revision of the paper; final approval of the version to publish. TP: data collection; contribution of data or analysis tools; performed the analysis (analysis and quantification of adult fish kidneys); critical revision of the paper; final approval of the version to publish. NV: data collection; contribution of data or analysis tools; critical revision of the paper; final approval of the version to publish. JM: data collection; contribution of data or analysis tools; performed the analysis (methylglyoxal and glucose determintation); critical revision of the paper; final approval of the version to publish. TF: data collection; contribution of data or analysis tools; performed the analysis (methylglyoxal and glucose determintation); critical revision of the paper; final approval of the version to publish. PPN: conceived and designed the analysis; data collection; contribution of data or analysis tools; critical revision of the paper; final approval of the version to publish. JK: conceived and designed the analysis; contribution of data or analysis tools; critical revision of the paper; data analysis and interpretation; final approval of the version to publish.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Supplementary material

18_2019_3127_MOESM1_ESM.pptx (685 kb)
Supplementary material 1 (PPTX 685 kb)

References

  1. 1.
    International Diabetes Federation (2017) IFD Diabetes Atlas, 8th editionGoogle Scholar
  2. 2.
    Lim AK (2014) Diabetic nephropathy—complications and treatment. Int J Nephrol Renovasc Dis 7:361–381CrossRefGoogle Scholar
  3. 3.
    Doria A (1998) Genetic markers of increased susceptibility to diabetic nephropathy. Horm Res 50(Suppl 1):6–11PubMedGoogle Scholar
  4. 4.
    Mooyaart AL, Valk EJJ, Van Es LA et al (2011) Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia 54:544–553.  https://doi.org/10.1007/s00125-010-1996-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Boldyrev A, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93:1803–1845.  https://doi.org/10.1152/physrev.00039.2012 CrossRefGoogle Scholar
  6. 6.
    Lenney JF, George RP, Weiss AM et al (1982) Human serum carnosinase: characterization, distinction from cellular carnosinase, and activation by cadmium. Clin Chim Acta 123:221–231.  https://doi.org/10.1016/0009-8981(82)90166-8 CrossRefPubMedGoogle Scholar
  7. 7.
    Teufel M, Saudek V, Ledig JP et al (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 278:6521–6531.  https://doi.org/10.1074/jbc.M209764200 CrossRefPubMedGoogle Scholar
  8. 8.
    Lenney JF (1976) Specifity and distribution of mammalian carnosinase. Biochem Biophys Acta 429:214–219PubMedGoogle Scholar
  9. 9.
    Peters V, Zschocke J, Schmitt CP (2018) Carnosinase, diabetes mellitus and the potential relevance of carnosinase deficiency. J Inherit Metab Dis 41:39–47.  https://doi.org/10.1007/s10545-017-0099-2 CrossRefPubMedGoogle Scholar
  10. 10.
    Kalyankar G, Meister A (1959) Enzymatic synthesis of carnosine and related β-alanyl and γ-aminobutyryl peptides. J Biol Chem 234:3210–3218.  https://doi.org/10.1016/j.tetasy.2009.05.040 CrossRefPubMedGoogle Scholar
  11. 11.
    Drozak J, Veiga-da-Cunha M, Vertommen D et al (2010) Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem 285:9346–9356.  https://doi.org/10.1074/jbc.M109.095505 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vistoli G, Orioli M, Pedretti A et al (2009) Design, synthesis, and evaluation of carnosine derivatives as selective and efficient sequestering agents of cytotoxic reactive carbonyl species. ChemMedChem 4:967–975.  https://doi.org/10.1002/cmdc.200800433 CrossRefPubMedGoogle Scholar
  13. 13.
    Hipkiss AR (2011) Energy metabolism, proteotoxic stress and age-related dysfunction—protection by carnosine. Mol Aspects Med 32:267–278.  https://doi.org/10.1016/j.mam.2011.10.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Alhamdani MSS, Al-Azzawie HF, Abbas FKH (2007) Decreased formation of advanced glycation end-products in peritoneal fluid by carnosine and related peptides. Perit Dial Int 27:86–89PubMedGoogle Scholar
  15. 15.
    Miceli V, Pampalone M, Frazziano G et al (2018) Carnosine protects pancreatic beta cells and islets against oxidative stress damage. Mol Cell Endocrinol 474:105–118.  https://doi.org/10.1016/j.mce.2018.02.016 CrossRefPubMedGoogle Scholar
  16. 16.
    Sauerhöfer S, Yuan G, Braun GS et al (2007) L-carnosine, a substrate of carnosinase-1, influences glucose metabolism. Diabetes 56:2425–2432.  https://doi.org/10.2337/db07-0177 CrossRefPubMedGoogle Scholar
  17. 17.
    Baye E, Ukropcova B, Ukropec J et al (2016) Physiological and therapeutic effects of carnosine on cardiometabolic risk and disease. Amino Acids 48:1131–1149.  https://doi.org/10.1007/s00726-016-2208-1 CrossRefPubMedGoogle Scholar
  18. 18.
    Albrecht T, Schilperoort M, Zhang S et al (2017) Carnosine attenuates the development of both type 2 diabetes and diabetic nephropathy in BTBR ob/ob mice. Sci Rep 7:1–16.  https://doi.org/10.1038/srep44492 CrossRefGoogle Scholar
  19. 19.
    Peters V, Riedl E, Braunagel M et al (2014) Carnosine treatment in combination with ACE inhibition in diabetic rats. Regul Pept 194–195:36–40.  https://doi.org/10.1016/j.regpep.2014.09.005 CrossRefGoogle Scholar
  20. 20.
    Peters V, Lanthaler B, Amberger A et al (2015) Carnosine metabolism in diabetes is altered by reactive metabolites. Amino Acids 47:2367–2376.  https://doi.org/10.1007/s00726-015-2024-z CrossRefPubMedGoogle Scholar
  21. 21.
    Janssen B, Hohenadel D, Brinkkoetter P et al (2005) Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54:2320–2327.  https://doi.org/10.2337/diabetes.54.8.2320 CrossRefGoogle Scholar
  22. 22.
    Senut M-C, Azher S, Margolis FL, Patei K, Mousa A, Majid A (2012) Distribution of carnosine-like peptides in the nervous system of developing and zebrafish (Danio rerio) and the embryonic effects of chronic carnosine exposure. Cell Tissue Res 29:997–1003.  https://doi.org/10.1016/j.biotechadv.2011.08.021.Secreted CrossRefGoogle Scholar
  23. 23.
    Qiu J, Hauske SJ, Zhang S et al (2018) Identification and characterisation of carnostatine (SAN9812), a potent and selective carnosinase (CN1) inhibitor with in vivo activity. Amino Acids.  https://doi.org/10.1007/s00726-018-2601-z CrossRefPubMedGoogle Scholar
  24. 24.
    Seth A, Stemple DL, Barroso I (2013) The emerging use of zebrafish to model metabolic disease. Dis Model Mech 6:1080–1088.  https://doi.org/10.1242/dmm.011346 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Heckler K, Kroll J (2017) Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms. Int J Mol Sci 18:1–9.  https://doi.org/10.3390/ijms18092002 CrossRefGoogle Scholar
  26. 26.
    Perner B, Englert C, Bollig F (2007) The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev Biol 309:87–96.  https://doi.org/10.1016/j.ydbio.2007.06.022 CrossRefPubMedGoogle Scholar
  27. 27.
    Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318.  https://doi.org/10.1006/dbio.2002.0711 CrossRefGoogle Scholar
  28. 28.
    Kimmel C, Ballard W, Kimmel S et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310CrossRefGoogle Scholar
  29. 29.
    Sharma KR, Heckler K, Stoll SJ et al (2016) ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions. Sci Rep 6:37172.  https://doi.org/10.1038/srep37172 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jurczyk A, Roy N, Bajwa R et al (2011) Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish. Gen Comp Endocrinol 170:334–345.  https://doi.org/10.1016/j.ygcen.2010.10.010 CrossRefPubMedGoogle Scholar
  31. 31.
    Peters V, Klessens CQF, Baelde HJ et al (2015) Intrinsic carnosine metabolism in the human kidney. Amino Acids 47:2541–2550.  https://doi.org/10.1007/s00726-015-2045-7 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jao L-E, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110:13904–13909.  https://doi.org/10.1073/pnas.1308335110 CrossRefPubMedGoogle Scholar
  33. 33.
    Wiggenhauser LM, Kohl K, Dietrich N et al (2017) Studying diabetes through the eyes of a fish: microdissection, visualization, and analysis of the adult tg(fli:EGFP) zebrafish retinal vasculature. J Vis Exp.  https://doi.org/10.3791/56674 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rueden CT, Schindelin J, Hiner MC et al (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:1–26.  https://doi.org/10.1186/s12859-017-1934-z CrossRefGoogle Scholar
  35. 35.
    Bürstenbinder K, Rzewuski G, Wirtz M et al (2007) The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J 49:238–249.  https://doi.org/10.1111/j.1365-313X.2006.02942.x CrossRefPubMedGoogle Scholar
  36. 36.
    Weger BD, Weger M, Görling B et al (2016) Extensive regulation of diurnal transcription and metabolism by glucocorticoids. PLoS Genet 12:1–24.  https://doi.org/10.1371/journal.pgen.1006512 CrossRefGoogle Scholar
  37. 37.
    Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798.  https://doi.org/10.1093/jxb/erh201 CrossRefPubMedGoogle Scholar
  38. 38.
    Rabbani N, Thornalley PJ (2014) Measurement of methylglyoxal by stable isotopic dilution analysis LC–MS/MS with corroborative prediction in physiological samples. Nat Protoc 9:1969CrossRefGoogle Scholar
  39. 39.
    Oka T, Nishimura Y, Zang L et al (2010) Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 10:21.  https://doi.org/10.1186/1472-6793-10-21 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wilkinson RN, van Eeden FJM (2014) The zebrafish as a model of vascular development and disease. Prog Mol Biol Transl Sci 124:93–122.  https://doi.org/10.1016/B978-0-12-386930-2.00005-7 CrossRefPubMedGoogle Scholar
  41. 41.
    Amelio I, Cutruzzolá F, Antonov A et al (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39:191–198.  https://doi.org/10.1016/j.tibs.2014.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kalhan SC, Hanson RW (2012) Resurgence of serine: an often neglected but indispensable amino acid. J Biol Chem 287:19786–19791.  https://doi.org/10.1074/jbc.R112.357194 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jackson MC, Kucera CM, Lenney JF (1991) Purification and properties of human serum carnosinase. Clin Chim Acta 196:193–205CrossRefGoogle Scholar
  44. 44.
    Brownlee M (2001) Biology of diabetic complications. Nature 414:813–820.  https://doi.org/10.1038/414813a CrossRefPubMedGoogle Scholar
  45. 45.
    Lo TWC, Westwood ME, McLellan AC et al (1994) Binding and modification of proteins by methylglyoxal under physiological conditions: a kinetic and mechanistic study with Nα-acetylarginine, Nα-acetylcysteine, and Nα-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305PubMedGoogle Scholar
  46. 46.
    Jörgens K, Stoll SJ, Pohl J et al (2015) High tissue glucose alters intersomitic blood vessels in zebra fish via methylglyoxal targeting the VEGF receptor signaling cascade. Diabetes 64:213–225.  https://doi.org/10.2337/db14-0352 CrossRefPubMedGoogle Scholar
  47. 47.
    Kimmel RA, Onder L, Wilfinger A et al (2011) Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish. BMC Biol 9:75.  https://doi.org/10.1186/1741-7007-9-75 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Song BC, Joo N-S, Aldini G, Yeum K-J (2014) Biological functions of histidine-dipeptides and metabolic syndrome. Nutr Res Pract 8:3.  https://doi.org/10.4162/nrp.2014.8.1.3 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Baye E, Ukropec J, De Courten MP et al (2017) Effect of carnosine supplementation on the plasma lipidome in overweight and obese adults: a pilot randomised controlled trial. Sci Rep 7:1–7.  https://doi.org/10.1038/s41598-017-17577-7 CrossRefGoogle Scholar
  50. 50.
    Peters V, Kebbewar M, Jansen EW et al (2010) Relevance of allosteric conformations and homocarnosine concentration on carnosinase activity. Amino Acids 38:1607–1615.  https://doi.org/10.1007/s00726-009-0367-z CrossRefPubMedGoogle Scholar
  51. 51.
    Bando K, Shimotsuji T, Toyoshima H et al (1984) Fluorometric assay of human serum carnosinase activity in normal children, adults and patients with myopathy. Ann Clin Biochem 21(Pt 6):510–514.  https://doi.org/10.1177/000456328402100613 CrossRefPubMedGoogle Scholar
  52. 52.
    Peñafiel R, Ruzafa C, Monserrat F, Cremades A (2004) Gender-related differences in carnosine, anserine and lysine content of murine skeletal muscle. Amino Acids 26:53–58.  https://doi.org/10.1007/s00726-003-0034-8 CrossRefPubMedGoogle Scholar
  53. 53.
    Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci 85:3175–3179.  https://doi.org/10.1073/pnas.85.9.3175 CrossRefPubMedGoogle Scholar
  54. 54.
    Peters V, Calabrese V, Forsberg E et al (2018) Protective actions of anserine under diabetic conditions. Int J Mol Sci 19:2751.  https://doi.org/10.3390/ijms19092751 CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Van De Poll MCG, Soeters PB, Deutz NEP et al (2004) Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am J Clin Nutr 79:185–197.  https://doi.org/10.1093/ajcn/79.2.185 CrossRefPubMedGoogle Scholar
  56. 56.
    Veiga-da-Cunha M, Chevalier N, Stroobant V et al (2014) Metabolite proofreading in carnosine and homocarnosine synthesis: molecular identification of PM20D2 as β-alanyl-lysine dipeptidase. J Biol Chem 289:19726–19736.  https://doi.org/10.1074/jbc.M114.576579 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lee YT, Hsu CC, Lin MH et al (2005) Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur J Pharmacol 513:145–150.  https://doi.org/10.1016/j.ejphar.2005.02.010 CrossRefGoogle Scholar
  58. 58.
    Pfister F, Riedl E, Wang Q et al (2011) Oral carnosine supplementation prevents vascular damage in experimental diabetic retinopathy. Cell Physiol Biochem 28:125–136.  https://doi.org/10.1159/000331721 CrossRefPubMedGoogle Scholar
  59. 59.
    Aldini G, Orioli M, Rossoni G et al (2011) The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J Cell Mol Med 15:1339–1354.  https://doi.org/10.1111/j.1582-4934.2010.01101.x CrossRefPubMedGoogle Scholar
  60. 60.
    Everaert I, Taes Y, De Heer E et al (2012) Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans. AJP Ren Physiol 302:F1537–F1544.  https://doi.org/10.1152/ajprenal.00084.2012 CrossRefGoogle Scholar
  61. 61.
    De Courten B, Jakubova M, De Courten MPJ et al (2016) Effects of carnosine supplementation on glucose metabolism: pilot clinical trial. Obesity 24:1027–1034.  https://doi.org/10.1002/oby.21434 CrossRefPubMedGoogle Scholar
  62. 62.
    Houjeghani S, Kheirouri S, Faraji E, Jafarabadi MA (2018) l-Carnosine supplementation attenuated fasting glucose, triglycerides, advanced glycation end products, and tumor necrosis factor–α levels in patients with type 2 diabetes: a double-blind placebo-controlled randomized clinical trial. Nutr Res 49:96–106CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Felix Schmöhl
    • 1
  • Verena Peters
    • 2
  • Claus Peter Schmitt
    • 2
  • Gernot Poschet
    • 3
  • Michael Büttner
    • 3
  • Xiaogang Li
    • 1
  • Tim Weigand
    • 2
  • Tanja Poth
    • 4
  • Nadine Volk
    • 5
  • Jakob Morgenstern
    • 6
  • Thomas Fleming
    • 6
  • Peter P. Nawroth
    • 6
    • 7
    • 8
  • Jens Kroll
    • 1
    Email author
  1. 1.European Center for Angioscience (ECAS), Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  2. 2.Center for Paediatric and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
  3. 3.Center for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
  4. 4.CMCP-Center for Model System and Comparative Pathology, Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
  5. 5.Tissue Bank of the National Center for Tumor Diseases (NCT)HeidelbergGermany
  6. 6.Department of Internal Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelbergGermany
  7. 7.German Center for Diabetes Research (DZD)München-NeuherbergGermany
  8. 8.Joint Heidelberg-IDC Translational Diabetes ProgramHelmholtz-Zentrum, MünchenHeidelbergGermany

Personalised recommendations