Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 19, pp 3875–3889 | Cite as

Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy

  • Solvig Diederichs
  • Veronika Tonnier
  • Melanie März
  • Simon I. Dreher
  • Andreas Geisbüsch
  • Wiltrud RichterEmail author
Original Article

Abstract

Re-directing mesenchymal stromal cell (MSC) chondrogenesis towards a non-hypertrophic articular chondrocyte-(AC)-like phenotype is important for improving articular cartilage neogenesis to enhance clinical cartilage repair strategies. This study is the first to demonstrate that high levels of non-canonical WNT5A followed by WNT11 and LEF1 discriminated MSC chondrogenesis from AC re-differentiation. Moreover, β-catenin seemed incompletely silenced in differentiating MSCs, which altogether suggested a role for WNT signaling in hypertrophic MSC differentiation. WNT inhibition with the small molecule IWP-2 supported MSC chondrogenesis according to elevated proteoglycan deposition and reduced the characteristic upregulation of BMP4, BMP7 and their target ID1, as well as IHH and its target GLI1 observed during endochondral differentiation. Along with the pro-hypertrophic transcription factor MEF2C, multiple hypertrophic downstream targets including IBSP and alkaline phosphatase activity were reduced by IWP-2, demonstrating that WNT activity drives BMP and hedgehog upregulation, and MSC hypertrophy. WNT inhibition almost matched the strong anti-hypertrophic capacity of pulsed parathyroid hormone-related protein application, and both outperformed suppression of BMP signaling with dorsomorphin, which also reduced cartilage matrix deposition. Yet, hypertrophic marker expression under IWP-2 remained above AC level, and in vivo mineralization and ectopic bone formation were reduced but not eliminated. Overall, the strong anti-hypertrophic effects of IWP-2 involved inhibition but not silencing of pro-hypertrophic BMP and IHH pathways, and more advanced silencing of WNT activity as well as combined application of IHH or BMP antagonists should next be considered to install articular cartilage neogenesis from human MSCs.

Keywords

WNT Mesenchymal stromal cells Chondrogenesis Hypertrophy Cartilage Bone 

Notes

Acknowledgements

We thank the microarray unit of the DKFZ Genomics and Proteomics Core Facility for providing the Illumina Whole-Genome Expression Beadchips and related services. We also thank Birgit Frey, Jennifer Reimold, Nina Hofmann, Franziska Heilmann, Felicia Klampfleuthner, and Ursula Kreuser for technical assistance and Svitlana Melnik for critical discussions.

Supplementary material

18_2019_3099_MOESM1_ESM.tif (63.7 mb)
Supplementary material 1 (TIFF 65264 kb)
18_2019_3099_MOESM2_ESM.tif (16.3 mb)
Supplementary material 2 (TIFF 16694 kb)
18_2019_3099_MOESM3_ESM.tif (582 kb)
Supplementary material 3 (TIFF 581 kb)
18_2019_3099_MOESM4_ESM.tif (1.5 mb)
Supplementary material 4 (TIFF 1554 kb)
18_2019_3099_MOESM5_ESM.tif (2 mb)
Supplementary material 5 (TIFF 2063 kb)
18_2019_3099_MOESM6_ESM.tif (4.8 mb)
Supplementary material 6 (TIFF 4938 kb)
18_2019_3099_MOESM7_ESM.tif (1.3 mb)
Supplementary material 7 (TIFF 1323 kb)
18_2019_3099_MOESM8_ESM.docx (31 kb)
Supplementary material 8 (DOCX 31 kb)
18_2019_3099_MOESM9_ESM.docx (15 kb)
Supplementary material 9 (DOCX 14 kb)
18_2019_3099_MOESM10_ESM.docx (17 kb)
Supplementary material 10 (DOCX 17 kb)

References

  1. 1.
    Buckwalter JA, Mankin HJ (1997) Articular cartilage. 2. Degeneration and osteoarthrosis, repair, regeneration, and transplantation. J Bone Jt Surg Am 79A:612–632.  https://doi.org/10.2106/00004623-199704000-00022 CrossRefGoogle Scholar
  2. 2.
    Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338:917–921.  https://doi.org/10.1126/science.1222454 CrossRefGoogle Scholar
  3. 3.
    Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11:21–34.  https://doi.org/10.1038/nrrheum.2014.157 CrossRefGoogle Scholar
  4. 4.
    Niemeyer P, Andereya S, Angele P, Ateschrang A, Aurich M, Baumann M, Behrens P, Bosch U, Erggelet C, Fickert S, Fritz J, Gebhard H, Gelse K, Gunther D, Hoburg A, Kasten P, Kolombe T, Madry H, Marlovits S, Meenen NM, Muller PE, Noth U, Petersen JP, Pietschmann M, Richter W, Rolauffs B, Rhunau K, Schewe B, Steinert A, Steinwachs MR, Welsch GH, Zinser W, Albrecht D (2013) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Tissue Regeneration” of the German Society of Orthopaedic Surgery and Traumatology (DGOU). Z Orthop Unfall 151:38–47.  https://doi.org/10.1055/s-0032-1328207 Google Scholar
  5. 5.
    Niemeyer P, Porichis S, Steinwachs M, Erggelet C, Kreuz PC, Schmal H, Uhl M, Ghanem N, Sudkamp NP, Salzmann G (2014) Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee. Am J Sports Med 42:150–157.  https://doi.org/10.1177/0363546513506593 CrossRefGoogle Scholar
  6. 6.
    Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54:3254–3266.  https://doi.org/10.1002/art.22136 CrossRefGoogle Scholar
  7. 7.
    Fischer J, Dickhut A, Rickert M, Richter W (2010) Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum 62:2696–2706.  https://doi.org/10.1002/art.27565 CrossRefGoogle Scholar
  8. 8.
    Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development altered endochondral bone-formation. J Cell Biol 126:1611–1623.  https://doi.org/10.1083/jcb.126.6.1611 CrossRefGoogle Scholar
  9. 9.
    Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622CrossRefGoogle Scholar
  10. 10.
    Mueller MB, Tuan RS (2008) Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum 58:1377–1388CrossRefGoogle Scholar
  11. 11.
    Narcisi R, Cleary MA, Brama PA, Hoogduijn MJ, Tuysuz N, Ten Berge D, van Osch GJ (2015) Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Rep 4:459–472.  https://doi.org/10.1016/j.stemcr.2015.01.017 CrossRefGoogle Scholar
  12. 12.
    Yang Z, Zou Y, Guo XM, Tan HS, Denslin V, Yeow CH, Ren XF, Liu TM, Hui JH, Lee EH (2012) Temporal activation of beta-catenin signaling in the chondrogenic process of mesenchymal stem cells affects the phenotype of the cartilage generated. Stem Cells Dev 21:1966–1976.  https://doi.org/10.1089/scd.2011.0376 CrossRefGoogle Scholar
  13. 13.
    Lolli A, Narcisi R, Lambertini E, Penolazzi L, Angelozzi M, Kops N, Gasparini S, van Osch GJ, Piva R (2016) Silencing of antichondrogenic MicroRNA-221 in human mesenchymal stem cells promotes cartilage repair in vivo. Stem Cells 34:1801–1811.  https://doi.org/10.1002/stem.2350 CrossRefGoogle Scholar
  14. 14.
    Ng JJ, Wei Y, Zhou B, Bernhard J, Robinson S, Burapachaisri A, Guo XE, Vunjak-Novakovic G (2017) Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage. Proc Natl Acad Sci USA 114:2556–2561.  https://doi.org/10.1073/pnas.1611771114 CrossRefGoogle Scholar
  15. 15.
    Occhetta P, Pigeot S, Rasponi M, Dasen B, Mehrkens A, Ullrich T, Kramer I, Guth-Gundel S, Barbero A, Martin I (2018) Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proc Natl Acad Sci USA 115:4625–4630.  https://doi.org/10.1073/pnas.1720658115 CrossRefGoogle Scholar
  16. 16.
    Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44.  https://doi.org/10.1002/jcb.20652 CrossRefGoogle Scholar
  17. 17.
    Fischer J, Ortel M, Hagmann S, Hoeflich A, Richter W (2016) Role of PTHrP(1-34) pulse frequency versus pulse duration to enhance mesenchymal stromal cell chondrogenesis. J Cell Physiol 231:2673–2681.  https://doi.org/10.1002/jcp.25369 CrossRefGoogle Scholar
  18. 18.
    Leijten JC, Emons J, Sticht C, van Gool S, Decker E, Uitterlinden A, Rappold G, Hofman A, Rivadeneira F, Scherjon S, Wit JM, van Meurs J, van Blitterswijk CA, Karperien M (2012) Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum 64:3302–3312.  https://doi.org/10.1002/art.34535 CrossRefGoogle Scholar
  19. 19.
    Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336.  https://doi.org/10.1038/nature01657 CrossRefGoogle Scholar
  20. 20.
    Pogue R, Lyons K (2006) BMP signaling in the cartilage growth plate. Curr Top Dev Biol 76:1–48.  https://doi.org/10.1016/S0070-2153(06)76001-X CrossRefGoogle Scholar
  21. 21.
    Dexheimer V, Gabler J, Bomans K, Sims T, Omlor G, Richter W (2016) Differential expression of TGF-beta superfamily members and role of Smad1/5/9-signalling in chondral versus endochondral chondrocyte differentiation. Sci Rep 6:36655.  https://doi.org/10.1038/srep36655 CrossRefGoogle Scholar
  22. 22.
    Takegami Y, Ohkawara B, Ito M, Masuda A, Nakashima H, Ishiguro N, Ohno K (2016) R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/beta-catenin signaling in endochondral ossification. Biochem Biophys Res Commun 473:255–264.  https://doi.org/10.1016/j.bbrc.2016.03.089 CrossRefGoogle Scholar
  23. 23.
    Lu C, Wan Y, Cao J, Zhu X, Yu J, Zhou R, Yao Y, Zhang L, Zhao H, Li H, Zhao J, He L, Ma G, Yang X, Yao Z, Guo X (2013) Wnt-mediated reciprocal regulation between cartilage and bone development during endochondral ossification. Bone 53:566–574.  https://doi.org/10.1016/j.bone.2012.12.016 CrossRefGoogle Scholar
  24. 24.
    Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750.  https://doi.org/10.1016/j.devcel.2005.03.016 CrossRefGoogle Scholar
  25. 25.
    Dao DY, Jonason JH, Zhang Y, Hsu W, Chen D, Hilton MJ, O’Keefe RJ (2012) Cartilage-specific beta-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res 27:1680–1694.  https://doi.org/10.1002/jbmr.1639 CrossRefGoogle Scholar
  26. 26.
    Tamamura Y, Otani T, Kanatani N, Koyama E, Kitagaki J, Komori T, Yamada Y, Costantini F, Wakisaka S, Pacifici M, Iwamoto M, Enomoto-Iwamoto M (2005) Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 280:19185–19195.  https://doi.org/10.1074/jbc.M414275200 CrossRefGoogle Scholar
  27. 27.
    Enomoto-Iwamoto M, Kitagaki J, Koyama E, Tamamura Y, Wu C, Kanatani N, Koike T, Okada H, Komori T, Yoneda T, Church V, Francis-West PH, Kurisu K, Nohno T, Pacifici M, Iwamoto M (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol 251:142–156CrossRefGoogle Scholar
  28. 28.
    Itasaki N, Hoppler S (2010) Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn 239:16–33.  https://doi.org/10.1002/dvdy.22009 Google Scholar
  29. 29.
    Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S (2003) BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18:1842–1853.  https://doi.org/10.1359/jbmr.2003.18.10.1842 CrossRefGoogle Scholar
  30. 30.
    Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW, Zhao M (2013) Wnt/beta-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 52:145–156.  https://doi.org/10.1016/j.bone.2012.09.029 CrossRefGoogle Scholar
  31. 31.
    Intini G, Nyman JS (2015) Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity. Bone 75:151–160.  https://doi.org/10.1016/j.bone.2015.01.008 CrossRefGoogle Scholar
  32. 32.
    Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192.  https://doi.org/10.1038/nm.3074 CrossRefGoogle Scholar
  33. 33.
    Mak KK, Chen MH, Day TF, Chuang PT, Yang Y (2006) Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development 133:3695–3707.  https://doi.org/10.1242/dev.02546 CrossRefGoogle Scholar
  34. 34.
    Spater D, Hill TP, O’Sullivan RJ, Gruber M, Conner DA, Hartmann C (2006) Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development 133:3039–3049.  https://doi.org/10.1242/dev.02471 CrossRefGoogle Scholar
  35. 35.
    Najdi R, Proffitt K, Sprowl S, Kaur S, Yu J, Covey TM, Virshup DM, Waterman ML (2012) A uniform human Wnt expression library reveals a shared secretory pathway and unique signaling activities. Differentiation 84:203–213.  https://doi.org/10.1016/j.diff.2012.06.004 CrossRefGoogle Scholar
  36. 36.
    Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177CrossRefGoogle Scholar
  37. 37.
    Witte F, Dokas J, Neuendorf F, Mundlos S, Stricker S (2009) Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation. Gene Expr Patterns 9:215–223.  https://doi.org/10.1016/j.gep.2008.12.009 CrossRefGoogle Scholar
  38. 38.
    Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock RT, Lefebvre V (2012) Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell 22:597–609.  https://doi.org/10.1016/j.devcel.2011.12.024 CrossRefGoogle Scholar
  39. 39.
    Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12:377–389.  https://doi.org/10.1016/j.devcel.2007.02.004 CrossRefGoogle Scholar
  40. 40.
    Stephens AS, Stephens SR, Hobbs C, Hutmacher DW, Bacic-Welsh D, Woodruff MA, Morrison NA (2011) Myocyte enhancer factor 2c, an osteoblast transcription factor identified by dimethyl sulfoxide (DMSO)-enhanced mineralization. J Biol Chem 286:30071–30086.  https://doi.org/10.1074/jbc.M111.253518 CrossRefGoogle Scholar
  41. 41.
    Miyazono K, Miyazawa K (2002) Id: a target of BMP signaling. Sci STKE 2002:pe40.  https://doi.org/10.1126/stke.2002.151.pe40 Google Scholar
  42. 42.
    Hollnagel A, Oehlmann V, Heymer J, Ruther U, Nordheim A (1999) Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 274:19838–19845CrossRefGoogle Scholar
  43. 43.
    Fischer J, Aulmann A, Dexheimer V, Grossner T, Richter W (2014) Intermittent PTHrP(1–34) exposure augments chondrogenesis and reduces hypertrophy of mesenchymal stromal cells. Stem Cells Dev 23:2513–2523.  https://doi.org/10.1089/scd.2014.0101 CrossRefGoogle Scholar
  44. 44.
    Andrade AC, Nilsson O, Barnes KM, Baron J (2007) Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone 40:1361–1369.  https://doi.org/10.1016/j.bone.2007.01.005 CrossRefGoogle Scholar
  45. 45.
    Church V, Nohno T, Linker C, Marcelle C, Francis-West P (2002) Wnt regulation of chondrocyte differentiation. J Cell Sci 115:4809–4818CrossRefGoogle Scholar
  46. 46.
    Lee HH, Behringer RR (2007) Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice. PLoS One 2:e450.  https://doi.org/10.1371/journal.pone.0000450 CrossRefGoogle Scholar
  47. 47.
    Dexheimer V, Frank S, Richter W (2012) Proliferation as a requirement for in vitro chondrogenesis of human mesenchymal stem cells. Stem Cells Dev 21:2160–2169.  https://doi.org/10.1089/scd.2011.0670 CrossRefGoogle Scholar
  48. 48.
    Huang X, Zhong L, Hendriks J, Post JN, Karperien M (2018) The effects of the WNT-signaling modulators BIO and PKF118-310 on the chondrogenic differentiation of human mesenchymal stem cells. Int J Mol Sci.  https://doi.org/10.3390/ijms19020561 Google Scholar
  49. 49.
    Im GI, Lee JM, Kim HJ (2011) Wnt inhibitors enhance chondrogenesis of human mesenchymal stem cells in a long-term pellet culture. Biotechnol Lett 33:1061–1068.  https://doi.org/10.1007/s10529-010-0514-3 CrossRefGoogle Scholar
  50. 50.
    Zhu X, Zhu H, Zhang L, Huang S, Cao J, Ma G, Feng G, He L, Yang Y, Guo X (2012) Wls-mediated Wnts differentially regulate distal limb patterning and tissue morphogenesis. Dev Biol 365:328–338.  https://doi.org/10.1016/j.ydbio.2012.02.019 CrossRefGoogle Scholar
  51. 51.
    Hartmann C, Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127:3141–3159Google Scholar
  52. 52.
    Yang Y, Topol L, Lee H, Wu J (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130:1003–1015CrossRefGoogle Scholar
  53. 53.
    Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223Google Scholar
  54. 54.
    Albanese I, Yu B, Al-Kindi H, Barratt B, Ott L, Al-Refai M, de Varennes B, Shum-Tim D, Cerruti M, Gourgas O, Rheaume E, Tardif JC, Schwertani A (2017) Role of noncanonical Wnt signaling pathway in human aortic valve calcification. Arterioscler Thromb Vasc Biol 37:543–552.  https://doi.org/10.1161/ATVBAHA.116.308394 CrossRefGoogle Scholar
  55. 55.
    Friedman MS, Oyserman SM, Hankenson KD (2009) Wnt11 promotes osteoblast maturation and mineralization through R-spondin 2. J Biol Chem 284:14117–14125.  https://doi.org/10.1074/jbc.M808337200 CrossRefGoogle Scholar
  56. 56.
    Liu S, Zhang E, Yang M, Lu L (2014) Overexpression of Wnt11 promotes chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in synergism with TGF-beta. Mol Cell Biochem 390:123–131.  https://doi.org/10.1007/s11010-014-1963-0 CrossRefGoogle Scholar
  57. 57.
    Fukuda T, Kokabu S, Ohte S, Sasanuma H, Kanomata K, Yoneyama K, Kato H, Akita M, Oda H, Katagiri T (2010) Canonical Wnts and BMPs cooperatively induce osteoblastic differentiation through a GSK3beta-dependent and beta-catenin-independent mechanism. Differentiation 80:46–52.  https://doi.org/10.1016/j.diff.2010.05.002 CrossRefGoogle Scholar
  58. 58.
    Glinka A, Delius H, Blumenstock C, Niehrs C (1996) Combinatorial signalling by Xwnt-11 and Xnr3 in the organizer ephithelium. Mech Dev 60:221–231.  https://doi.org/10.1016/S0925-4773(96)00624-7 CrossRefGoogle Scholar
  59. 59.
    Zhang P, Cai Y, Soofi A, Dressler GR (2012) Activation of Wnt11 by transforming growth factor-beta drives mesenchymal gene expression through non-canonical Wnt protein signaling in renal epithelial cells. J Biol Chem 287:21290–21302.  https://doi.org/10.1074/jbc.M112.357202 CrossRefGoogle Scholar
  60. 60.
    Liu J, Johnson K, Li J, Piamonte V, Steffy BM, Hsieh MH, Ng N, Zhang J, Walker JR, Ding S, Muneoka K, Wu X, Glynne R, Schultz PG (2011) Regenerative phenotype in mice with a point mutation in transforming growth factor beta type I receptor (TGFBR1). Proc Natl Acad Sci USA 108:14560–14565.  https://doi.org/10.1073/pnas.1111056108 CrossRefGoogle Scholar
  61. 61.
    Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, Roth MG, Amatruda JF, Chen C, Lum L (2009) Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5:100–107.  https://doi.org/10.1038/nchembio.137 CrossRefGoogle Scholar
  62. 62.
    Weiss S, Hennig T, Bock R, Steck E, Richter W (2010) Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol 223:84–93.  https://doi.org/10.1002/jcp.22013 Google Scholar
  63. 63.
    Gabler J, Ruetze M, Kynast KL, Grossner T, Diederichs S, Richter W (2015) Stage-specific miRs in chondrocyte maturation: differentiation-dependent and hypertrophy-related miR clusters and the miR-181 family. Tissue Eng Part A 21:2840–2851.  https://doi.org/10.1089/ten.TEA.2015.0352 CrossRefGoogle Scholar
  64. 64.
    Rasini V, Dominici M, Kluba T, Siegel G, Lusenti G, Northoff H, Horwitz EM, Schafer R (2013) Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy.  https://doi.org/10.1016/j.jcyt.2012.11.009 Google Scholar
  65. 65.
    Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336.  https://doi.org/10.1016/j.cell.2007.08.025 CrossRefGoogle Scholar
  66. 66.
    Brocher J, Janicki P, Voltz P, Seebach E, Neumann E, Mueller-Ladner U, Richter W (2013) Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction. Stem Cell Res 11:1393–1406.  https://doi.org/10.1016/j.scr.2013.07.008 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Center for Experimental OrthopaedicsHeidelberg University HospitalHeidelbergGermany
  2. 2.Clinic for Orthopaedics and Trauma SurgeryHeidelberg University HospitalHeidelbergGermany

Personalised recommendations