Cellular and Molecular Life Sciences

, Volume 76, Issue 9, pp 1729–1746 | Cite as

Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals

  • Wei Ge
  • Lan Li
  • Paul W. Dyce
  • Massimo De FeliciEmail author
  • Wei ShenEmail author


The reproductive life span in women starts at puberty and ends at menopause, following the exhaustion of the follicle stockpile termed the ovarian reserve. Increasing data from experimental animal models and epidemiological studies indicate that exposure to a number of ubiquitously distributed reproductively toxic environmental chemicals (RTECs) can contribute to earlier menopause and even premature ovarian failure. However, the causative relationship between environmental chemical exposure and earlier menopause in women remains poorly understood. The present work, is an attempt to review the current evidence regarding the effects of RTECs on the main ovarian activities in mammals, focusing on how such compounds can affect the ovarian reserve at any stages of ovarian development. We found that in rodents, strong evidence exists that in utero, neonatal, prepubescent and even adult exposure to RTECs leads to impaired functioning of the ovary and a shortening of the reproductive lifespan. Regarding human, data from cross-sectional surveys suggest that human exposure to certain environmental chemicals can compromise a woman’s reproductive health and in some cases, correlate with earlier menopause. In conclusion, evidences exist that exposure to RTECs can compromise a woman’s reproductive health. However, human exposures may date back to the developmental stage, while the adverse effects are usually diagnosed decades later, thus making it difficult to determine the association between RTECs exposure and human reproductive health. Therefore, epidemiological surveys and more experimental investigation on humans, or alternatively primates, are needed to determine the direct and indirect effects caused by RTECs exposure on the ovary function, and to characterize their action mechanisms.


Premature menopause Earlier menopause Reproductive lifespan Endocrine disrupting chemicals 



This work was supported by National Key Research and Development Program of China (2016YFD0501207) and National Nature Science Foundation (31471346, 31572225 and 31671554).

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.


  1. 1.
    De Felici M, Klinger FG, Farini D, Scaldaferri ML, Iona S, Lobascio M (2005) Establishment of oocyte population in the fetal ovary: primordial germ cell proliferation and oocyte programmed cell death. Reprod Biomed Online 10(2):182–191CrossRefPubMedGoogle Scholar
  2. 2.
    Monget P, Bobe J, Gougeon A, Fabre S, Monniaux D, Dalbies-Tran R (2012) The ovarian reserve in mammals: a functional and evolutionary perspective. Mol Cell Endocrinol 356(1–2):2–12CrossRefPubMedGoogle Scholar
  3. 3.
    Grive KJ, Freiman RN (2015) The developmental origins of the mammalian ovarian reserve. Development 142(15):2554–2563CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    De Felici M (2010) Germ stem cells in the mammalian adult ovary: considerations by a fan of the primordial germ cells. Mol Hum Reprod 16(9):632–636CrossRefPubMedGoogle Scholar
  5. 5.
    De Felici M, Barrios F (2013) Seeking the origin of female germline stem cells in the mammalian ovary. Reproduction 146(4):R125–R130CrossRefPubMedGoogle Scholar
  6. 6.
    Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF (1992) Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod 7(10):1342–1346CrossRefPubMedGoogle Scholar
  7. 7.
    Forabosco A, Sforza C, De Pol A, Vizzotto L, Marzona L, Ferrario VF (1991) Morphometric study of the human neonatal ovary. Anat Rec 231(2):201–208CrossRefPubMedGoogle Scholar
  8. 8.
    Tilly JL, Kolesnick RN (2002) Sphingolipids, apoptosis, cancer treatments and the ovary: investigating a crime against female fertility. Biochim Biophys Acta 1585(2–3):135–138CrossRefPubMedGoogle Scholar
  9. 9.
    McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21(2):200–214PubMedGoogle Scholar
  10. 10.
    Reddy P, Zheng W, Liu K (2010) Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab 21(2):96–103CrossRefPubMedGoogle Scholar
  11. 11.
    Gold EB (2011) The timing of the age at which natural menopause occurs. Obstet Gynecol Clin N Am 38(3):425–440CrossRefGoogle Scholar
  12. 12.
    Loprinzi CL, Kugler JW, Sloan JA, Mailliard JA, LaVasseur BI, Barton DL, Novotny PJ, Dakhil SR, Rodger K, Rummans TA, Christensen BJ (2000) Venlafaxine in management of hot flashes in survivors of breast cancer: a randomised controlled trial. Lancet 356(9247):2059–2063CrossRefPubMedGoogle Scholar
  13. 13.
    Ossewaarde ME, Bots ML, Verbeek AL, Peeters PH, van der Graaf Y, Grobbee DE, van der Schouw YT (2005) Age at menopause, cause-specific mortality and total life expectancy. Epidemiology 16(4):556–562CrossRefPubMedGoogle Scholar
  14. 14.
    van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijkemans JC, Banga JD (1996) Age at menopause as a risk factor for cardiovascular mortality. Lancet 347(9003):714–718CrossRefPubMedGoogle Scholar
  15. 15.
    Cui R, Iso H, Toyoshima H, Date C, Yamamoto A, Kikuchi S, Kondo T, Watanabe Y, Koizumi A, Inaba Y, Tamakoshi A (2006) Relationships of age at menarche and menopause, and reproductive year with mortality from cardiovascular disease in Japanese postmenopausal women: the JACC study. J Epidemiol 16(5):177–184CrossRefPubMedGoogle Scholar
  16. 16.
    Jacobsen BK, Knutsen SF, Fraser GE (1999) Age at natural menopause and total mortality and mortality from ischemic heart disease: the Adventist Health Study. J Clin Epidemiol 52(4):303–307CrossRefPubMedGoogle Scholar
  17. 17.
    Penoni DC, Fidalgo TK, Torres SR, Varela VM, Masterson D, Leao AT, Maia LC (2017) Bone density and clinical periodontal attachment in postmenopausal women: a systematic review and meta-analysis. J Dent Res 96(3):261–269CrossRefPubMedGoogle Scholar
  18. 18.
    Monninkhof EM, van der Schouw YT, Peeters PH (1999) Early age at menopause and breast cancer: are leaner women more protected? A prospective analysis of the Dutch DOM cohort. Breast Cancer Res Treat 55(3):285–291CrossRefPubMedGoogle Scholar
  19. 19.
    Jacobs I, Davies AP, Bridges J, Stabile I, Fay T, Lower A, Grudzinskas JG, Oram D (1993) Prevalence screening for ovarian cancer in postmenopausal women by CA 125 measurement and ultrasonography. BMJ 306(6884):1030–1034CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    McKinlay SM, Brambilla DJ, Posner JG (1992) The normal menopause transition. Maturitas 14(2):103–115CrossRefPubMedGoogle Scholar
  21. 21.
    Gold EB, Crawford SL, Avis NE, Crandall CJ, Matthews KA, Waetjen LE, Lee JS, Thurston R, Vuga M, Harlow SD (2013) Factors related to age at natural menopause: longitudinal analyses from SWAN. Am J Epidemiol 178(1):70–83CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Coulam CB, Adamson SC, Annegers JF (1986) Incidence of premature ovarian failure. Obstet Gynecol 67(4):604–606PubMedGoogle Scholar
  23. 23.
    Beck-Peccoz P, Persani L (2006) Premature ovarian failure. Orphanet J Rare Dis 1:9CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Qin Y, Jiao X, Simpson JL, Chen ZJ (2015) Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update 21(6):787–808CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vabre P, Gatimel N, Moreau J, Gayrard V, Picard-Hagen N, Parinaud J, Leandri RD (2017) Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environ Health 16(1):37CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Iorio R, Castellucci A, Ventriglia G, Teoli F, Cellini V, Macchiarelli G, Cecconi S (2014) Ovarian toxicity: from environmental exposure to chemotherapy. Curr Pharm Des 20(34):5388–5397CrossRefPubMedGoogle Scholar
  27. 27.
    Dragojevic-Dikic S, Vasiljevic M, Nikolic B, Pazin V, Tasic L, Jurisic A, Dikic S, Perisic Z (2013) Premature ovarian failure: immunological aspects and therapeutic strategies. Vojnosanit Pregl 70(11):1051–1055CrossRefPubMedGoogle Scholar
  28. 28.
    Hewlett M, Mahalingaiah S (2015) Update on primary ovarian insufficiency. Curr Opin Endocrinol Diabetes Obes 22(6):483–489CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH (2016) Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev 37(6):609–635CrossRefGoogle Scholar
  30. 30.
    Buck Louis GM, Sundaram R, Schisterman EF, Sweeney AM, Lynch CD, Gore-Langton RE, Maisog J, Kim S, Chen Z, Barr DB (2013) Persistent environmental pollutants and couple fecundity: the LIFE study. Environ Health Perspect 121(2):231–236CrossRefPubMedGoogle Scholar
  31. 31.
    Grindler NM, Allsworth JE, Macones GA, Kannan K, Roehl KA, Cooper AR (2015) Persistent organic pollutants and early menopause in U.S. women. PLoS One 10(1):e0116057CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Craig ZR, Wang W, Flaws JA (2011) Endocrine-disrupting chemicals in ovarian function: effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction 142(5):633–646CrossRefPubMedGoogle Scholar
  33. 33.
    Richardson MC, Guo M, Fauser BC, Macklon NS (2014) Environmental and developmental origins of ovarian reserve. Hum Reprod Update 20(3):353–369CrossRefPubMedGoogle Scholar
  34. 34.
    Patel S, Zhou C, Rattan S, Flaws JA (2015) Effects of endocrine-disrupting chemicals on the ovary. Biol Reprod 93(1):20CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177CrossRefPubMedGoogle Scholar
  36. 36.
    Badach H, Nazimek T, Kaminska IA (2007) Pesticide content in drinking water samples collected from orchard areas in central Poland. Ann Agric Environ Med 14(1):109–114PubMedGoogle Scholar
  37. 37.
    Hannon PR, Flaws JA (2015) The effects of phthalates on the ovary. Front Endocrinol (Lausanne) 6:8CrossRefGoogle Scholar
  38. 38.
    Reinli K, Block G (1996) Phytoestrogen content of foods—a compendium of literature values. Nutr Cancer 26(2):123–148CrossRefPubMedGoogle Scholar
  39. 39.
    Kristensen DM, Mazaud-Guittot S, Gaudriault P, Lesne L, Serrano T, Main KM, Jegou B (2016) Analgesic use—prevalence, biomonitoring and endocrine and reproductive effects. Nat Rev Endocrinol 12(7):381–393CrossRefPubMedGoogle Scholar
  40. 40.
    Jegou B (2015) Paracetamol-induced endocrine disruption in human fetal testes. Nat Rev Endocrinol 11(8):453–454CrossRefPubMedGoogle Scholar
  41. 41.
    Ge W, Chen C, De Felici M, Shen W (2015) In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells. Cell Death Dis 6:e1906CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    De Felici M (2013) Origin, migration, and proliferation of human primordial germ cells. In: Coticchio G et al (eds) Oogenesis. Springer, London, pp 19–37CrossRefGoogle Scholar
  43. 43.
    De Felici M (2016) The formation and migration of primordial germ cells in mouse and man. Results Probl Cell Differ 58:23–46CrossRefPubMedGoogle Scholar
  44. 44.
    Kojima Y, Sasaki K, Yokobayashi S, Sakai Y, Nakamura T, Yabuta Y, Nakaki F, Nagaoka S, Woltjen K, Hotta A, Yamamoto T, Saitou M (2017) Evolutionarily distinctive transcriptional and signaling programs drive human germ cell lineage specification from pluripotent stem cells. Cell Stem Cell 21(4):517–532 e5CrossRefPubMedGoogle Scholar
  45. 45.
    De Felici M (2011) Nuclear reprogramming in mouse primordial germ cells: epigenetic contribution. Stem Cells Int 2011:425863CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nilsson EE, Skinner MK (2015) Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Transl Res 165(1):12–17CrossRefPubMedGoogle Scholar
  47. 47.
    Wei Y, Schatten H, Sun QY (2015) Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update 21(2):194–208CrossRefPubMedGoogle Scholar
  48. 48.
    Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157(1):95–109CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    De Felici M (2009) Primordial germ cell biology at the beginning of the XXI century. Int J Dev Biol 53(7):891–894CrossRefPubMedGoogle Scholar
  50. 50.
    Wang C, Zhou B, Xia G (2017) Erratum to: Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 74(14):2567CrossRefPubMedGoogle Scholar
  51. 51.
    Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P (2006) Retinoid signaling determines germ cell fate in mice. Science 312(5773):596–600CrossRefPubMedGoogle Scholar
  52. 52.
    Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA 103(8):2474–2479CrossRefPubMedGoogle Scholar
  53. 53.
    Le Bouffant R, Guerquin MJ, Duquenne C, Frydman N, Coffigny H, Rouiller-Fabre V, Frydman R, Habert R, Livera G (2010) Meiosis initiation in the human ovary requires intrinsic retinoic acid synthesis. Hum Reprod 25(10):2579–2590CrossRefPubMedGoogle Scholar
  54. 54.
    Childs AJ, Cowan G, Kinnell HL, Anderson RA, Saunders PT (2011) Retinoic acid signalling and the control of meiotic entry in the human fetal gonad. PLoS ONE 6(6):e20249CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mu X, Wen J, Guo M, Wang J, Li G, Wang Z, Wang Y, Teng Z, Cui Y, Xia G (2013) Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells. J Cell Physiol 228(3):627–639CrossRefPubMedGoogle Scholar
  56. 56.
    Liang GJ, Zhang XF, Wang JJ, Sun YC, Sun XF, Cheng SF, Li L, De Felici M, Shen W (2015) Activin A accelerates the progression of fetal oocytes throughout meiosis and early oogenesis in the mouse. Stem Cells Dev 24(20):2455–2465CrossRefPubMedGoogle Scholar
  57. 57.
    Chassot AA, Gregoire EP, Lavery R, Taketo MM, de Rooij DG, Adams IR, Chaboissier MC (2011) RSPO1/beta-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary. PLoS ONE 6(10):e25641CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Liu CF, Parker K, Yao HH (2010) WNT4/beta-catenin pathway maintains female germ cell survival by inhibiting activin betaB in the mouse fetal ovary. PLoS ONE 5(4):e10382CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Xu H, Beasley MD, Warren WD, van der Horst GT, McKay MJ (2005) Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8(6):949–961CrossRefPubMedGoogle Scholar
  60. 60.
    Griswold MD, Hogarth CA, Bowles J, Koopman P (2012) Initiating meiosis: the case for retinoic acid. Biol Reprod 86(2):35CrossRefPubMedGoogle Scholar
  61. 61.
    Tedesco M, Desimio MG, Klinger FG, De Felici M, Farini D (2013) Minimal concentrations of retinoic acid induce stimulation by retinoic acid 8 and promote entry into meiosis in isolated pregonadal and gonadal mouse primordial germ cells. Biol Reprod 88(6):145CrossRefPubMedGoogle Scholar
  62. 62.
    Tedesco M, La Sala G, Barbagallo F, De Felici M, Farini D (2009) STRA8 shuttles between nucleus and cytoplasm and displays transcriptional activity. J Biol Chem 284(51):35781–35793CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mandon-Pepin B, Touraine P, Kuttenn F, Derbois C, Rouxel A, Matsuda F, Nicolas A, Cotinot C, Fellous M (2008) Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur J Endocrinol 158(1):107–115CrossRefPubMedGoogle Scholar
  64. 64.
    Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G (2004) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13(11):1171–1181CrossRefPubMedGoogle Scholar
  65. 65.
    Paredes A, Garcia-Rudaz C, Kerr B, Tapia V, Dissen GA, Costa ME, Cornea A, Ojeda SR (2005) Loss of synaptonemal complex protein-1, a synaptonemal complex protein, contributes to the initiation of follicular assembly in the developing rat ovary. Endocrinology 146(12):5267–5277CrossRefPubMedGoogle Scholar
  66. 66.
    Tosh D, Rani HS, Murty US, Deenadayal A, Grover P (2015) Mutational analysis of the FIGLA gene in women with idiopathic premature ovarian failure. Menopause 22(5):520–526CrossRefPubMedGoogle Scholar
  67. 67.
    Zhao H, Chen ZJ, Qin Y, Shi Y, Wang S, Choi Y, Simpson JL, Rajkovic A (2008) Transcription factor FIGLA is mutated in patients with premature ovarian failure. Am J Hum Genet 82(6):1342–1348CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Jagarlamudi K, Rajkovic A (2012) Oogenesis: transcriptional regulators and mouse models. Mol Cell Endocrinol 356(1–2):31–39CrossRefPubMedGoogle Scholar
  69. 69.
    Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM (2004) NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305(5687):1157–1159CrossRefPubMedGoogle Scholar
  70. 70.
    Grive KJ, Seymour KA, Mehta R, Freiman RN (2014) TAF4b promotes mouse primordial follicle assembly and oocyte survival. Dev Biol 392(1):42–51CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Wang N, Zhang P, Guo X, Zhou Z, Sha J (2011) Hnrnpk, a protein differentially expressed in immature rat ovarian development, is required for normal primordial follicle assembly and development. Endocrinology 152(3):1024–1035CrossRefPubMedGoogle Scholar
  72. 72.
    Niu W, Wang Y, Wang Z, Xin Q, Feng L, Zhao L, Wen J, Zhang H, Wang C, Xia G (2016) JNK signaling regulates E-cadherin junctions in germline cysts and determines primordial follicle formation in mice. Development 143(10):1778–1787CrossRefPubMedGoogle Scholar
  73. 73.
    Zhao L, Du X, Huang K, Zhang T, Teng Z, Niu W, Wang C, Xia G (2016) Rac1 modulates the formation of primordial follicles by facilitating STAT3-directed Jagged1, GDF9 and BMP15 transcription in mice. Sci Rep 6:23972CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Jones RL, Pepling ME (2013) KIT signaling regulates primordial follicle formation in the neonatal mouse ovary. Dev Biol 382(1):186–197CrossRefPubMedGoogle Scholar
  75. 75.
    Bristol-Gould SK, Kreeger PK, Selkirk CG, Kilen SM, Cook RW, Kipp JL, Shea LD, Mayo KE, Woodruff TK (2006) Postnatal regulation of germ cells by activin: the establishment of the initial follicle pool. Dev Biol 298(1):132–148CrossRefPubMedGoogle Scholar
  76. 76.
    Knight PG, Satchell L, Glister C (2012) Intra-ovarian roles of activins and inhibins. Mol Cell Endocrinol 359(1–2):53–65CrossRefPubMedGoogle Scholar
  77. 77.
    Yao HH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, Swain A, Capel B (2004) Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 230(2):210–215CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Nilsson EE, Schindler R, Savenkova MI, Skinner MK (2011) Inhibitory actions of Anti-Mullerian Hormone (AMH) on ovarian primordial follicle assembly. PLoS ONE 6(5):e20087CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Chen Y, Breen K, Pepling ME (2009) Estrogen can signal through multiple pathways to regulate oocyte cyst breakdown and primordial follicle assembly in the neonatal mouse ovary. J Endocrinol 202(3):407–417CrossRefPubMedGoogle Scholar
  80. 80.
    Chen Y, Jefferson WN, Newbold RR, Padilla-Banks E, Pepling ME (2007) Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology 148(8):3580–3590CrossRefPubMedGoogle Scholar
  81. 81.
    Pepling ME (2012) Follicular assembly: mechanisms of action. Reproduction 143(2):139–149CrossRefPubMedGoogle Scholar
  82. 82.
    Pelosi E, Forabosco A, Schlessinger D (2015) Genetics of the ovarian reserve. Front Genet 6:308CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Klinger FG, Rossi V, De Felici M (2015) Multifaceted programmed cell death in the mammalian fetal ovary. Int J Dev Biol 59(1–3):51–54CrossRefPubMedGoogle Scholar
  84. 84.
    De Felici M, Lobascio AM, Klinger FG (2008) Cell death in fetal oocytes: many players for multiple pathways. Autophagy 4(2):240–242CrossRefPubMedGoogle Scholar
  85. 85.
    Pepling ME, Spradling AC (2001) Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 234(2):339–351CrossRefPubMedGoogle Scholar
  86. 86.
    Xu B, Hua J, Zhang Y, Jiang X, Zhang H, Ma T, Zheng W, Sun R, Shen W, Sha J, Cooke HJ, Shi Q (2011) Proliferating cell nuclear antigen (PCNA) regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PLoS ONE 6(1):e16046CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Rodrigues P, Limback D, McGinnis LK, Plancha CE, Albertini DF (2009) Multiple mechanisms of germ cell loss in the perinatal mouse ovary. Reproduction 137(4):709–720CrossRefPubMedGoogle Scholar
  88. 88.
    Gawriluk TR, Hale AN, Flaws JA, Dillon CP, Green DR, Rucker EB 3rd (2011) Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction 141(6):759–765CrossRefPubMedGoogle Scholar
  89. 89.
    Motta PM, Makabe S (1986) Elimination of germ cells during differentiation of the human ovary: an electron microscopic study. Eur J Obstet Gynecol Reprod Biol 22(5–6):271–286CrossRefPubMedGoogle Scholar
  90. 90.
    Jones RL, Pepling ME (2013) Role of the antiapoptotic proteins BCL2 and MCL1 in the neonatal mouse ovary. Biol Reprod 88(2):46PubMedGoogle Scholar
  91. 91.
    Greenfeld CR, Babus JK, Furth PA, Marion S, Hoyer PB, Flaws JA (2007) BAX is involved in regulating follicular growth, but is dispensable for follicle atresia in adult mouse ovaries. Reproduction 133(1):107–116CrossRefPubMedGoogle Scholar
  92. 92.
    Sun YC, Wang YY, Sun XF, Cheng SF, Li L, Zhao Y, Shen W, Chen H (2018) The role of autophagy during murine primordial follicle assembly. Aging (Albany NY) 10(2):197–211CrossRefGoogle Scholar
  93. 93.
    Wang YY, Sun YC, Sun XF, Cheng SF, Li B, Zhang XF, De Felici M, Shen W (2017) Starvation at birth impairs germ cell cyst breakdown and increases autophagy and apoptosis in mouse oocytes. Cell Death Dis 8(2):e2613CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Watanabe R, Kimura N (2018) Non-suckling starvation of neonatal mice promotes primordial follicle formation with activation of ovarian autophagy. J Reprod Dev 64(1):89–94CrossRefPubMedGoogle Scholar
  95. 95.
    Dissen GA, Romero C, Hirshfield AN, Ojeda SR (2001) Nerve growth factor is required for early follicular development in the mammalian ovary. Endocrinology 142(5):2078–2086CrossRefPubMedGoogle Scholar
  96. 96.
    Kerr B, Garcia-Rudaz C, Dorfman M, Paredes A, Ojeda SR (2009) NTRK1 and NTRK2 receptors facilitate follicle assembly and early follicular development in the mouse ovary. Reproduction 138(1):131–140CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Zhang H, Liu K (2015) Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood. Hum Reprod Update 21(6):779–786CrossRefPubMedGoogle Scholar
  98. 98.
    Klinger FG, De Felici M (2002) In vitro development of growing oocytes from fetal mouse oocytes: stage-specific regulation by stem cell factor and granulosa cells. Dev Biol 244(1):85–95CrossRefPubMedGoogle Scholar
  99. 99.
    Nilsson EE, Kezele P, Skinner MK (2002) Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 188(1–2):65–73CrossRefPubMedGoogle Scholar
  100. 100.
    Nilsson E, Parrott JA, Skinner MK (2001) Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 175(1–2):123–130CrossRefPubMedGoogle Scholar
  101. 101.
    Nilsson EE, Detzel C, Skinner MK (2006) Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction 131(6):1007–1015CrossRefPubMedGoogle Scholar
  102. 102.
    Driancourt MA, Reynaud K, Cortvrindt R, Smitz J (2000) Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod 5(3):143–152CrossRefPubMedGoogle Scholar
  103. 103.
    Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383(6600):531–535CrossRefPubMedGoogle Scholar
  104. 104.
    Omari S, Waters M, Naranian T, Kim K, Perumalsamy AL, Chi M, Greenblatt E, Moley KH, Opferman JT, Jurisicova A (2015) Mcl-1 is a key regulator of the ovarian reserve. Cell Death Dis 6:e1755CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Lee DH, Jacobs DR Jr (2015) Methodological issues in human studies of endocrine disrupting chemicals. Rev Endocr Metab Disord 16(4):289–297CrossRefPubMedGoogle Scholar
  106. 106.
    Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308(5727):1466–1469CrossRefPubMedGoogle Scholar
  107. 107.
    Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 21(4):214–222CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Arendrup FS, Mazaud-Guittot S, Jegou B, Kristensen DM (2018) EDC IMPACT: is exposure during pregnancy to acetaminophen/paracetamol disrupting female reproductive development? Endocr Connect 7(1):149–158CrossRefPubMedGoogle Scholar
  109. 109.
    Zhang HQ, Zhang XF, Zhang LJ, Chao HH, Pan B, Feng YM, Li L, Sun XF, Shen W (2012) Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol Biol Rep 39(5):5651–5657CrossRefPubMedGoogle Scholar
  110. 110.
    Lawson C, Gieske M, Murdoch B, Ye P, Li Y, Hassold T, Hunt PA (2011) Gene expression in the fetal mouse ovary is altered by exposure to low doses of bisphenol A. Biol Reprod 84(1):79–86CrossRefPubMedGoogle Scholar
  111. 111.
    Holm JB, Mazaud-Guittot S, Danneskiold-Samsoe NB, Chalmey C, Jensen B, Norregard MM, Hansen CH, Styrishave B, Svingen T, Vinggaard AM, Koch HM, Bowles J, Koopman P, Jegou B, Kristiansen K, Kristensen DM (2016) Intrauterine exposure to paracetamol and aniline impairs female reproductive development by reducing follicle reserves and fertility. Toxicol Sci 150(1):178–189CrossRefPubMedGoogle Scholar
  112. 112.
    Massimo De Felici GLS (2016) Epigenetic reprogramming in the mammalian germ line: possible effects by endocrine disruptors on primordial germ cells. Open Biotechnol J 10(Suppl-1, M4):36–41CrossRefGoogle Scholar
  113. 113.
    La Sala G, Farini D, De Felici M (2009) Proapoptotic effects of lindane on mouse primordial germ cells. Toxicol Sci 108(2):445–451CrossRefPubMedGoogle Scholar
  114. 114.
    Iona S, Klinger FG, Sisti R, Ciccalese R, Nunziata A, De Felici M (2002) A comparative study of cytotoxic effects of N-ethyl-N-nitrosourea, adriamycin, and mono-(2-ethylhexyl)phthalate on mouse primordial germ cells. Cell Biol Toxicol 18(2):131–145CrossRefPubMedGoogle Scholar
  115. 115.
    Del-Mazo J, Brieno-Enriquez MA, Garcia-Lopez J, Lopez-Fernandez LA, De-Felici M (2013) Endocrine disruptors, gene deregulation and male germ cell tumors. Int J Dev Biol 57(2–4):225–239CrossRefPubMedGoogle Scholar
  116. 116.
    Zhang XF, Zhang LJ, Feng YN, Chen B, Feng YM, Liang GJ, Li L, Shen W (2012) Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol Biol Rep 39(9):8621–8628CrossRefPubMedGoogle Scholar
  117. 117.
    Chao HH, Zhang XF, Chen B, Pan B, Zhang LJ, Li L, Sun XF, Shi QH, Shen W (2012) Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochem Cell Biol 137(2):249–259CrossRefPubMedGoogle Scholar
  118. 118.
    Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK (2012) Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS ONE 7(5):e36129CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48(6):849–862CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339(6118):448–452CrossRefPubMedGoogle Scholar
  121. 121.
    Skinner MK, Guerrero-Bosagna C, Haque M, Nilsson E, Bhandari R, McCarrey JR (2013) Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS ONE 8(7):e66318CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH (2013) Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol Reprod 88(5):112CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Li L, Zhang T, Qin XS, Ge W, Ma HG, Sun LL, Hou ZM, Chen H, Chen P, Qin GQ, Shen W, Zhang XF (2014) Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol Biol Rep 41(3):1227–1235CrossRefPubMedGoogle Scholar
  124. 124.
    Zhou C, Gao L, Flaws JA (2017) Exposure to an environmentally relevant phthalate mixture causes transgenerational effects on female reproduction in mice. Endocrinology 158(6):1739–1754CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Pocar P, Fiandanese N, Berrini A, Secchi C, Borromeo V (2017) Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice. Toxicol Appl Pharmacol 322:113–121CrossRefPubMedGoogle Scholar
  126. 126.
    Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho SM, Hunt P, Iguchi T, Juul A, McLachlan JA, Schwartz J, Skakkebaek N, Soto AM, Swan S, Walker C, Woodruff TK, Woodruff TJ, Giudice LC, Guillette LJ Jr (2008) Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 90(4):911–940CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Susiarjo M, Hassold TJ, Freeman E, Hunt PA (2007) Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet 3(1):e5CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Hunt PA, Lawson C, Gieske M, Murdoch B, Smith H, Marre A, Hassold T, VandeVoort CA (2012) Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc Natl Acad Sci USA 109(43):17525–17530CrossRefPubMedGoogle Scholar
  129. 129.
    Brieno-Enriquez MA, Robles P, Camats-Tarruella N, Garcia-Cruz R, Roig I, Cabero L, Martinez F, Caldes MG (2011) Human meiotic progression and recombination are affected by Bisphenol A exposure during in vitro human oocyte development. Hum Reprod 26(10):2807–2818CrossRefPubMedGoogle Scholar
  130. 130.
    Brieno-Enriquez MA, Reig-Viader R, Cabero L, Toran N, Martinez F, Roig I, Garcia Caldes M (2012) Gene expression is altered after bisphenol A exposure in human fetal oocytes in vitro. Mol Hum Reprod 18(4):171–183CrossRefPubMedGoogle Scholar
  131. 131.
    Zhang XF, Zhang T, Han Z, Liu JC, Liu YP, Ma JY, Li L, Shen W (2015) Transgenerational inheritance of ovarian development deficiency induced by maternal diethylhexyl phthalate exposure. Reprod Fertil Dev 27(8):1213–1221CrossRefPubMedGoogle Scholar
  132. 132.
    Liew Z, Ritz B, Rebordosa C, Lee PC, Olsen J (2014) Acetaminophen use during pregnancy, behavioral problems, and hyperkinetic disorders. JAMA Pediatr 168(4):313–320CrossRefPubMedGoogle Scholar
  133. 133.
    Werler MM, Mitchell AA, Hernandez-Diaz S, Honein MA (2005) Use of over-the-counter medications during pregnancy. Am J Obstet Gynecol 193(3 Pt 1):771–777CrossRefPubMedGoogle Scholar
  134. 134.
    Dean A, van den Driesche S, Wang Y, McKinnell C, Macpherson S, Eddie SL, Kinnell H, Hurtado-Gonzalez P, Chambers TJ, Stevenson K, Wolfinger E, Hrabalkova L, Calarrao A, Bayne RA, Hagen CP, Mitchell RT, Anderson RA, Sharpe RM (2016) Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences. Sci Rep 6:19789CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30(4):293–342CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Wang W, Hafner KS, Flaws JA (2014) In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse. Toxicol Appl Pharmacol 276(2):157–164CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Lea RG, Amezaga MR, Loup B, Mandon-Pepin B, Stefansdottir A, Filis P, Kyle C, Zhang Z, Allen C, Purdie L, Jouneau L, Cotinot C, Rhind SM, Sinclair KD, Fowler PA (2016) The fetal ovary exhibits temporal sensitivity to a ‘real-life’ mixture of environmental chemicals. Sci Rep 6:22279CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Zhang T, Li L, Qin XS, Zhou Y, Zhang XF, Wang LQ, De Felici M, Chen H, Qin GQ, Shen W (2014) Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial follicle assembly in vitro. Environ Mol Mutagen 55(4):343–353CrossRefPubMedGoogle Scholar
  139. 139.
    Mu X, Liao X, Chen X, Li Y, Wang M, Shen C, Zhang X, Wang Y, Liu X, He J (2015) DEHP exposure impairs mouse oocyte cyst breakdown and primordial follicle assembly through estrogen receptor-dependent and independent mechanisms. J Hazard Mater 298:232–240CrossRefPubMedGoogle Scholar
  140. 140.
    Jefferson W, Newbold R, Padilla-Banks E, Pepling M (2006) Neonatal genistein treatment alters ovarian differentiation in the mouse: inhibition of oocyte nest breakdown and increased oocyte survival. Biol Reprod 74(1):161–168CrossRefPubMedGoogle Scholar
  141. 141.
    Rodriguez HA, Santambrosio N, Santamaria CG, Munoz-de-Toro M, Luque EH (2010) Neonatal exposure to bisphenol A reduces the pool of primordial follicles in the rat ovary. Reprod Toxicol 30(4):550–557CrossRefPubMedGoogle Scholar
  142. 142.
    Ahn HJ, An BS, Jung EM, Yang H, Choi KC, Jeung EB (2012) Parabens inhibit the early phase of folliculogenesis and steroidogenesis in the ovaries of neonatal rats. Mol Reprod Dev 79(9):626–636CrossRefPubMedGoogle Scholar
  143. 143.
    Karavan JR, Pepling ME (2012) Effects of estrogenic compounds on neonatal oocyte development. Reprod Toxicol 34(1):51–56CrossRefPubMedGoogle Scholar
  144. 144.
    Armenti AE, Zama AM, Passantino L, Uzumcu M (2008) Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats. Toxicol Appl Pharmacol 233(2):286–296CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Johansson HK, Jacobsen PR, Hass U, Svingen T, Vinggaard AM, Isling LK, Axelstad M, Christiansen S, Boberg J (2016) Perinatal exposure to mixtures of endocrine disrupting chemicals reduces female rat follicle reserves and accelerates reproductive aging. Reprod Toxicol 61:186–194CrossRefPubMedGoogle Scholar
  146. 146.
    Rivera OE, Varayoud J, Rodriguez HA, Munoz-de-Toro M, Luque EH (2011) Neonatal exposure to bisphenol A or diethylstilbestrol alters the ovarian follicular dynamics in the lamb. Reprod Toxicol 32(3):304–312CrossRefPubMedGoogle Scholar
  147. 147.
    Zhuang XL, Fu YC, Xu JJ, Kong XX, Chen ZG, Luo LL (2010) Effects of genistein on ovarian follicular development and ovarian life span in rats. Fitoterapia 81(8):998–1002CrossRefPubMedGoogle Scholar
  148. 148.
    Rasmussen LM, Sen N, Liu X, Craig ZR (2017) Effects of oral exposure to the phthalate substitute acetyl tributyl citrate on female reproduction in mice. J Appl Toxicol 37(6):668–675CrossRefPubMedGoogle Scholar
  149. 149.
    Cummings AM (1997) Methoxychlor as a model for environmental estrogens. Crit Rev Toxicol 27(4):367–379CrossRefPubMedGoogle Scholar
  150. 150.
    Hall DL, Payne LA, Putnam JM, Huet-Hudson YM (1997) Effect of methoxychlor on implantation and embryo development in the mouse. Reprod Toxicol 11(5):703–708CrossRefPubMedGoogle Scholar
  151. 151.
    Medigovic I, Ristic N, Trifunovic S, Manojlovic-Stojanoski M, Milosevic V, Zikic D, Nestorovic N (2012) Genistein affects ovarian folliculogenesis: a stereological study. Microsc Res Tech 75(12):1691–1699CrossRefPubMedGoogle Scholar
  152. 152.
    Hannon PR, Peretz J, Flaws JA (2014) Daily exposure to di(2-ethylhexyl) phthalate alters estrous cyclicity and accelerates primordial follicle recruitment potentially via dysregulation of the phosphatidylinositol 3-kinase signaling pathway in adult mice. Biol Reprod 90(6):136CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Hannon PR, Brannick KE, Wang W, Flaws JA (2015) Mono(2-ethylhexyl) phthalate accelerates early folliculogenesis and inhibits steroidogenesis in cultured mouse whole ovaries and antral follicles. Biol Reprod 92(5):120CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Li Y, Zhang W, Liu J, Wang W, Li H, Zhu J, Weng S, Xiao S, Wu T (2014) Prepubertal bisphenol A exposure interferes with ovarian follicle development and its relevant gene expression. Reprod Toxicol 44:33–40CrossRefPubMedGoogle Scholar
  155. 155.
    Pru JK, Kaneko-Tarui T, Jurisicova A et al (2009) Induction of proapoptotic gene expression and recruitment of p53 herald ovarian follicle loss caused by polycyclic aromatic hydrocarbons. Reprod Sci 16(4):347–356CrossRefPubMedGoogle Scholar
  156. 156.
    Jurisicova A, Taniuchi A, Li H, Shang Y, Antenos M, Detmar J, Xu J, Matikainen T, Benito Hernandez A, Nunez G, Casper RF (2007) Maternal exposure to polycyclic aromatic hydrocarbons diminishes murine ovarian reserve via induction of Harakiri. J Clin Investig 117(12):3971–3978PubMedGoogle Scholar
  157. 157.
    Lee SG, Kim JY, Chung JY, Kim YJ, Park JE, Oh S, Yoon YD, Yoo KS, Yoo YH, Kim JM (2013) Bisphenol A exposure during adulthood causes augmentation of follicular atresia and luteal regression by decreasing 17beta-estradiol synthesis via downregulation of aromatase in rat ovary. Environ Health Perspect 121(6):663–669CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Matsuda F, Inoue N, Manabe N, Ohkura S (2012) Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev 58(1):44–50CrossRefPubMedGoogle Scholar
  159. 159.
    Xu C, Chen JA, Qiu Z, Zhao Q, Luo J, Yang L, Zeng H, Huang Y, Zhang L, Cao J, Shu W (2010) Ovotoxicity and PPAR-mediated aromatase downregulation in female Sprague–Dawley rats following combined oral exposure to benzo[a]pyrene and di-(2-ethylhexyl) phthalate. Toxicol Lett 199(3):323–332CrossRefPubMedGoogle Scholar
  160. 160.
    Wang W, Sun Y, Liu J, Li Y, Li H, Xiao S, Weng S, Zhang W (2014) Soy isoflavones administered to rats from weaning until sexual maturity affect ovarian follicle development by inducing apoptosis. Food Chem Toxicol 72:51–60CrossRefPubMedGoogle Scholar
  161. 161.
    Xu J, Osuga Y, Yano T, Morita Y, Tang X, Fujiwara T, Takai Y, Matsumi H, Koga K, Taketani Y, Tsutsumi O (2002) Bisphenol A induces apoptosis and G2-to-M arrest of ovarian granulosa cells. Biochem Biophys Res Commun 292(2):456–462CrossRefPubMedGoogle Scholar
  162. 162.
    Wang W, Craig ZR, Basavarajappa MS, Hafner KS, Flaws JA (2012) Mono-(2-ethylhexyl) phthalate induces oxidative stress and inhibits growth of mouse ovarian antral follicles. Biol Reprod 87(6):152CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J (2017) Environmental influences on ovarian dysgenesis—developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 13(7):400–414CrossRefPubMedGoogle Scholar
  164. 164.
    Schmidt CW (2017) Age at menopause: do chemical exposures play a role? Environ Health Perspect 125(6):062001CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Taylor KW, Hoffman K, Thayer KA, Daniels JL (2014) Polyfluoroalkyl chemicals and menopause among women 20–65 years of age (NHANES). Environ Health Perspect 122(2):145–150CrossRefPubMedGoogle Scholar
  166. 166.
    Knox SS, Jackson T, Javins B, Frisbee SJ, Shankar A, Ducatman AM (2011) Implications of early menopause in women exposed to perfluorocarbons. J Clin Endocrinol Metab 96(6):1747–1753CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Galloway T, Cipelli R, Guralnik J, Ferrucci L, Bandinelli S, Corsi AM, Money C, McCormack P, Melzer D (2010) Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI adult population study. Environ Health Perspect 118(11):1603–1608CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Eskenazi B, Warner M, Marks AR, Samuels S, Gerthoux PM, Vercellini P, Olive DL, Needham L, Patterson D Jr, Mocarelli P (2005) Serum dioxin concentrations and age at menopause. Environ Health Perspect 113(7):858–862CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Aldad TS, Rahmani N, Leranth C, Taylor HS (2011) Bisphenol-A exposure alters endometrial progesterone receptor expression in the nonhuman primate. Fertil Steril 96(1):175–179CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Webber L, Davies M, Anderson R, Bartlett J, Braat D, Cartwright B, Cifkova R, de Muinck Keizer-Schrama S, Hogervorst E, Janse F, Liao L, Vlaisavljevic V, Zillikens C, Vermeulen N (2016) ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod 31(5):926–937CrossRefPubMedGoogle Scholar
  171. 171.
    Goswami D, Conway GS (2007) Premature ovarian failure. Horm Res 68(4):196–202PubMedGoogle Scholar
  172. 172.
    Brown S (2015) Endocrine disrupting chemicals associated with earlier menopause. Post Reprod Health 21(1):5–6CrossRefPubMedGoogle Scholar
  173. 173.
    Beranger R, Hoffmann P, Christin-Maitre S, Bonneterre V (2012) Occupational exposures to chemicals as a possible etiology in premature ovarian failure: a critical analysis of the literature. Reprod Toxicol 33(3):269–279CrossRefPubMedGoogle Scholar
  174. 174.
    Gascon M, Vrijheid M, Nieuwenhuijsen MJ (2016) The built environment and child health: an overview of current evidence. Curr Environ Health Rep 3(3):250–257CrossRefPubMedGoogle Scholar
  175. 175.
    Haruty B, Friedman J, Hopp S, Daniels R, Pregler J (2016) Reproductive health and the environment: counseling patients about risks. Cleve Clin J Med 83(5):367–372CrossRefPubMedGoogle Scholar
  176. 176.
    Mok-Lin E, Ehrlich S, Williams PL, Petrozza J, Wright DL, Calafat AM, Ye X, Hauser R (2010) Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int J Androl 33:385–393CrossRefPubMedGoogle Scholar
  177. 177.
    Bloom MS, Kim D, Vom Saal FS, Taylor JA, Cheng G, Lamb JD, Fujimoto VY (2011) Bisphenol A exposure reduces the estradiol response to gonadotropin stimulation during in vitro fertilization. Fertil Steril 96:672–677e2CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Fujimoto VY, Kim D, vom Saal FS, Lamb JD, Taylor JA, Bloom MS (2011) Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil Steril 95:1816–1819CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Life Sciences, Institute of Reproductive SciencesQingdao Agricultural UniversityQingdaoChina
  2. 2.Department of Animal SciencesAuburn UniversityAuburnUSA
  3. 3.Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly

Personalised recommendations