Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 9, pp 1713–1727 | Cite as

Testicular germ cell tumor: a comprehensive review

  • Aalia Batool
  • Najmeh Karimi
  • Xiang-Nan Wu
  • Su-Ren ChenEmail author
  • Yi-Xun Liu
Review

Abstract

Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.

Keywords

Spermatogenesis Teratoma Risk factors Platinum resistance Serum makers MiRNA Mouse models Database 

Notes

Acknowledgements

This work was supported by the Young Elite Scientists Sponsorship Program by CAST (Grant no. YESS20160118 to SR Chen); National Natural Science Foundation of China (31501198 to SR Chen); CAS-TWAS President’s Fellowship for International PhD Students (to A Batool).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Ghazarian AA et al (2017) Future of testicular germ cell tumor incidence in the United States: forecast through 2026. Cancer 123(12):2320–2328.  https://doi.org/10.1002/cncr.30597 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ushida H et al (2012) Therapeutic potential of SOX2 inhibition for embryonal carcinoma. J Urol 187(5):1876–1881.  https://doi.org/10.1016/j.juro.2011.12.058 CrossRefPubMedGoogle Scholar
  3. 3.
    Yamada Y et al (2017) A novel prognostic factor TRIM44 promotes cell proliferation and migration, and inhibits apoptosis in testicular germ cell tumor. Cancer Sci 108(1):32–41.  https://doi.org/10.1111/cas.13105 CrossRefPubMedGoogle Scholar
  4. 4.
    Gu S et al (2013) Molecular mechanisms of regulation and action of microRNA-199a in testicular germ cell tumor and glioblastomas. PLoS One 8(12):e83980.  https://doi.org/10.1371/journal.pone.0083980 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liu X et al (2016) microRNA-199a-3p functions as tumor suppressor by regulating glucose metabolism in testicular germ cell tumors. Mol Med Rep 14(3):2311–2320.  https://doi.org/10.3892/mmr.2016.5472 CrossRefPubMedGoogle Scholar
  6. 6.
    Fankhauser CD et al (2015) Frequent PD-L1 expression in testicular germ cell tumors. Br J Cancer 113(3):411–413.  https://doi.org/10.1038/bjc.2015.244 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vogt AP, Chen Z, Osunkoya AO (2010) Rete testis invasion by malignant germ cell tumor and/or intratubular germ cell neoplasia: what is the significance of this finding? Hum Pathol 41(9):1339–1344.  https://doi.org/10.1016/j.humpath.2010.03.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Pinto F et al (2018) Brachyury oncogene is a prognostic factor in high-risk testicular germ cell tumors. Andrology 6(4):597–604.  https://doi.org/10.1111/andr.12495 CrossRefPubMedGoogle Scholar
  9. 9.
    Martinelli C et al (2017) MGMT and CALCA promoter methylation are associated with poor prognosis in testicular germ cell tumor patients. Oncotarget 8(31):50608–50617.  https://doi.org/10.18632/oncotarget.11167 CrossRefPubMedGoogle Scholar
  10. 10.
    Zhu Y et al (2016) The polymorphic hMSH5 C85T allele augments radiotherapy-induced spermatogenic impairment. Andrology 4(5):873–879.  https://doi.org/10.1111/andr.12203 CrossRefPubMedGoogle Scholar
  11. 11.
    Yamada Y et al (2016) Prognostic value of CD66b positive tumor-infiltrating neutrophils in testicular germ cell tumor. BMC Cancer 16(1):898.  https://doi.org/10.1186/s12885-016-2926-5 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Atkin NB, Baker MC (1982) Specific chromosome change, i(12p), in testicular tumours? Lancet 2(8311):1349.  https://doi.org/10.1016/S0140-6736(82)91557-4 CrossRefPubMedGoogle Scholar
  13. 13.
    Stock C et al (1996) Isochromosome 12p and maternal loss of 1p36 in a pediatric testicular germ cell tumor. Cancer Genet Cytogenet 91(2):95–100.  https://doi.org/10.1016/0165-4608(95)00190-5 CrossRefPubMedGoogle Scholar
  14. 14.
    Juric D et al (2005) Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures. Proc Natl Acad Sci USA 102(49):17763–17768.  https://doi.org/10.1073/pnas.0509082102 CrossRefPubMedGoogle Scholar
  15. 15.
    Rodriguez S et al (2003) Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2-p12.1. Oncogene 22(12):1880–1891.  https://doi.org/10.1038/sj.onc.1206302 CrossRefPubMedGoogle Scholar
  16. 16.
    Ezeh UI et al (2005) Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 104(10):2255–2265.  https://doi.org/10.1002/cncr.21432 CrossRefPubMedGoogle Scholar
  17. 17.
    Korkola JE et al (2006) Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res 66(2):820–827.  https://doi.org/10.1158/0008-5472.can-05-2445 CrossRefPubMedGoogle Scholar
  18. 18.
    Albers P et al (2015) Guidelines on testicular cancer: 2015 update. Eur Urol 68(6):1054–1068.  https://doi.org/10.1016/j.eururo.2015.07.044 CrossRefPubMedGoogle Scholar
  19. 19.
    Albers P et al (2011) EAU guidelines on testicular cancer: 2011 update. Eur Urol 60(2):304–319.  https://doi.org/10.1016/j.eururo.2011.05.038 CrossRefPubMedGoogle Scholar
  20. 20.
    Tarrant WP, Czerniak BA, Guo CC (2013) Relationship between primary and metastatic testicular germ cell tumors: a clinicopathologic analysis of 100 cases. Hum Pathol 44(10):2220–2226.  https://doi.org/10.1016/j.humpath.2013.05.004 CrossRefPubMedGoogle Scholar
  21. 21.
    Iida K et al (2014) Metastasectomy as optimal treatment for late relapsing solitary brain metastasis from testicular germ cell tumor: a case report. BMC Res Notes 7:865.  https://doi.org/10.1186/1756-0500-7-865 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ushida H et al (2013) Recurrent rhabdomyosarcoma after adjuvant chemotherapy for stage I non-seminomatous germ cell tumor with malignant transformation. Int J Urol 20(5):544–546.  https://doi.org/10.1111/j.1442-2042.2012.03197.x CrossRefPubMedGoogle Scholar
  23. 23.
    Gavriel H, Kleid S (2015) Benign neck metastasis of a testicular germ cell tumor. Int Surg 100(1):164–168.  https://doi.org/10.9738/INTSURG-D-13-00157.1 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    O’Connor A, Dias A, Timon C (2013) Role of neck dissection for metastatic nonseminomatous testicular carcinoma: case report and literature review. J Laryngol Otol 127(10):1038–1039.  https://doi.org/10.1017/S0022215113002090 CrossRefPubMedGoogle Scholar
  25. 25.
    Rascol O et al (2012) A proof-of-concept, randomized, placebo-controlled, multiple cross-overs (n-of-1) study of naftazone in Parkinson’s disease. Fundam Clin Pharmacol 26(4):557–564.  https://doi.org/10.1111/j.1472-8206.2011.00951.x CrossRefPubMedGoogle Scholar
  26. 26.
    Talwar V et al (2002) Intracardiac metastases from a testicular germ cell tumor. J Assoc Physicians India 50:855PubMedGoogle Scholar
  27. 27.
    do Nascimento FB et al (2016) Right cardiac chambers involvement by a malignant testicular germ cell tumor: an imaging-pathologic correlation. Urology 93:e9–e11.  https://doi.org/10.1016/j.urology.2016.03.023 CrossRefPubMedGoogle Scholar
  28. 28.
    Hakiman H et al (2013) Rapid progression of a germ cell tumor encasing the inferior vena cava and aorta following a radical orchiectomy. Rare Tumors 5(2):79–82.  https://doi.org/10.4081/rt.2013.e21 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Delahunt B et al (1990) Testicular germ cell tumor with pineal metastases. Neurosurgery 26(4):688–691.  https://doi.org/10.1097/00006123-199004000-00023 CrossRefPubMedGoogle Scholar
  30. 30.
    Oing C et al (2014) Nodal, pulmonary and pleural gliomatosis in a 42-year-old-male with non-seminomatous testicular germ cell cancer. Histopathology 65(1):142–143.  https://doi.org/10.1111/his.12374 CrossRefPubMedGoogle Scholar
  31. 31.
    Aydiner A et al (1993) Testicular germ cell tumor with gastric metastasis. Acta Oncol 32(4):459–460.  https://doi.org/10.3109/02841869309093625 CrossRefPubMedGoogle Scholar
  32. 32.
    Lauro S et al (2014) Gastric metastases from testicular cancer: case report and review of literature. J Gastrointest Cancer 45(Suppl 1):22–24.  https://doi.org/10.1007/s12029-013-9524-4 CrossRefPubMedGoogle Scholar
  33. 33.
    Assimakopoulos SF et al (2006) A case of chondrosarcoma developing in a recurrent retroperitoneal mass after chemotherapy for testicular germ cell tumor. Urol Int 77(1):86–88.  https://doi.org/10.1159/000092942 CrossRefPubMedGoogle Scholar
  34. 34.
    Kvammen O et al (2016) Long-term relative survival after diagnosis of testicular germ cell tumor. Cancer Epidemiol Biomark Prev 25(5):773–779.  https://doi.org/10.1158/1055-9965.EPI-15-1153 CrossRefGoogle Scholar
  35. 35.
    Cost NG et al (2012) Effect of testicular germ cell tumor therapy on renal function. Urology 80(3):641–648.  https://doi.org/10.1016/j.urology.2012.04.064 CrossRefPubMedGoogle Scholar
  36. 36.
    Weijl NI et al (2000) Thromboembolic events during chemotherapy for germ cell cancer: a cohort study and review of the literature. J Clin Oncol 18(10):2169–2178.  https://doi.org/10.1200/JCO.2000.18.10.2169 CrossRefPubMedGoogle Scholar
  37. 37.
    Lange J et al (2017) Cisplatin-related cerebral infarction in testicular germ cell cancer: short report of three Cases and pathomechanism. Clin Neurol Neurosurg 152:76–77.  https://doi.org/10.1016/j.clineuro.2016.11.014 CrossRefPubMedGoogle Scholar
  38. 38.
    Azak A et al (2008) Cerebrovascular accident during cisplatin-based combination chemotherapy of testicular germ cell tumor: an unusual case report. Anticancer Drugs 19(1):97–98.  https://doi.org/10.1097/CAD.0b013e3282f0777e CrossRefPubMedGoogle Scholar
  39. 39.
    Meattini I et al (2010) Ischemic stroke during cisplatin-based chemotherapy for testicular germ cell tumor: case report and review of the literature. J Chemother 22(2):134–136.  https://doi.org/10.1179/joc.2010.22.2.134 CrossRefPubMedGoogle Scholar
  40. 40.
    Nonomura N et al (1997) Secondary acute monocytic leukemia occurring during the treatment of a testicular germ cell tumor. A case report and review of the literature. Urol Int 58(4):239–242.  https://doi.org/10.1159/000282992 CrossRefPubMedGoogle Scholar
  41. 41.
    Matsumoto S et al (2000) Secondary leukemia following ultra high-dose chemotherapy with peripheral blood stem cell autotransplantation for refractory testicular cancer. Nihon Hinyokika Gakkai Zasshi 91(10–11):687–691.  https://doi.org/10.5980/jpnjurol1989.91.68 CrossRefPubMedGoogle Scholar
  42. 42.
    Cerrud-Rodriguez RC, Quinteros MG, Azam M (2017) Internal carotid artery occlusion and stroke as a complication of cisplatin-based chemotherapy for metastatic testicular germ cell tumour. BMJ Case Rep.  https://doi.org/10.1136/bcr-2017-220084 CrossRefPubMedGoogle Scholar
  43. 43.
    Furuhashi K et al (2013) Onco-testicular sperm extraction: testicular sperm extraction in azoospermic and very severely oligozoospermic cancer patients. Andrologia 45(2):107–110.  https://doi.org/10.1111/j.1439-0272.2012.01319.x CrossRefPubMedGoogle Scholar
  44. 44.
    Roque M et al (2015) Onco-testicular sperm extraction: birth of a healthy baby after fertility preservation in synchronous bilateral testicular cancer and azoospermia. Andrologia 47(4):482–485.  https://doi.org/10.1111/and.12292 CrossRefPubMedGoogle Scholar
  45. 45.
    Kirkali Z et al (2001) Testis sparing surgery for the treatment of a sequential bilateral testicular germ cell tumor. Int J Urol 8(12):710–712.  https://doi.org/10.1046/j.1442-2042.2001.00395.x CrossRefPubMedGoogle Scholar
  46. 46.
    Demir A et al (2004) Testis-sparing surgery in an adult with bilateral synchronous seminomatous tumor. Int J Urol 11(12):1142–1144.  https://doi.org/10.1111/j.1442-2042.2004.00946.x CrossRefPubMedGoogle Scholar
  47. 47.
    Peltzer K, Pengpid S (2015) Knowledge, attitudes and practice of testicular self-examination among male university students from bangladesh, madagascar, singapore, south africa and turkey. Asian Pac J Cancer Prev 16(11):4741–4743.  https://doi.org/10.7314/APJCP.2015.16.11.4741 CrossRefPubMedGoogle Scholar
  48. 48.
    Chen SR, Liu YX (2015) Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 149(4):R159–R167.  https://doi.org/10.1530/REP-14-0481 CrossRefPubMedGoogle Scholar
  49. 49.
    Chen SR et al (2013) Disruption of genital ridge development causes aberrant primordial germ cell proliferation but does not affect their directional migration. BMC Biol 11:22.  https://doi.org/10.1186/1741-7007-11-22 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chen SR et al (2015) Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget 6(35):37012–37027.  https://doi.org/10.18632/oncotarget.6115 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rebourcet D et al (2014) Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development 141(10):2139–2149.  https://doi.org/10.1242/dev.107029 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    DeFalco T et al (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12(7):1107–1119.  https://doi.org/10.1016/j.celrep.2015.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chen SR, Liu YX (2016) Myh11-Cre is not limited to peritubular myoid cells and interaction between Sertoli and peritubular myoid cells needs investigation. Proc Natl Acad Sci USA 113(17):E2352.  https://doi.org/10.1073/pnas.1602873113 CrossRefPubMedGoogle Scholar
  54. 54.
    Wang YQ et al (2018) GATA4 is a negative regulator of contractility in testicular peritubular myoid cells. Reproduction.  https://doi.org/10.1530/rep-18-0148 CrossRefPubMedGoogle Scholar
  55. 55.
    Green CD et al (2018) A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-Seq. Dev Cell 46(5):651–667e610.  https://doi.org/10.1016/j.devcel.2018.07.025 CrossRefPubMedGoogle Scholar
  56. 56.
    Wang M et al (2018) Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell 23(4):599–614e594.  https://doi.org/10.1016/j.stem.2018.08.007 CrossRefPubMedGoogle Scholar
  57. 57.
    Skakkebaek NE (1972) Possible carcinoma-in situ of the testis. Lancet 2(7776):516–517.  https://doi.org/10.1016/S0140-6736(72)91909-5 CrossRefPubMedGoogle Scholar
  58. 58.
    Kristensen DG et al (2014) Evidence that active demethylation mechanisms maintain the genome of carcinoma in situ cells hypomethylated in the adult testis. Br J Cancer 110(3):668–678.  https://doi.org/10.1038/bjc.2013.727 CrossRefPubMedGoogle Scholar
  59. 59.
    Mitchell RT et al (2014) Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential. Mod Pathol 27(9):1255–1266.  https://doi.org/10.1038/modpathol.2013.246 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Vasdev N, Moon A, Thorpe AC (2013) Classification, epidemiology and therapies for testicular germ cell tumours. Int J Dev Biol 57(2–4):133–139.  https://doi.org/10.1387/ijdb.130031nv CrossRefPubMedGoogle Scholar
  61. 61.
    Ottesen AM et al (2003) High-resolution comparative genomic hybridization detects extra chromosome arm 12p material in most cases of carcinoma in situ adjacent to overt germ cell tumors, but not before the invasive tumor development. Genes Chromosomes Cancer 38(2):117–125.  https://doi.org/10.1002/gcc.10244 CrossRefPubMedGoogle Scholar
  62. 62.
    Summersgill B et al (2001) Chromosomal imbalances associated with carcinoma in situ and associated testicular germ cell tumours of adolescents and adults. Br J Cancer 85(2):213–220.  https://doi.org/10.1054/bjoc.2001.1889 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Di Vizio D et al (2005) Loss of the tumor suppressor gene PTEN marks the transition from intratubular germ cell neoplasias (ITGCN) to invasive germ cell tumors. Oncogene 24(11):1882–1894.  https://doi.org/10.1038/sj.onc.1208368 CrossRefPubMedGoogle Scholar
  64. 64.
    Datta MW et al (2001) Transition from in situ to invasive testicular germ cell neoplasia is associated with the loss of p21 and gain of mdm-2 expression. Mod Pathol 14(5):437–442.  https://doi.org/10.1038/modpathol.3880331 CrossRefPubMedGoogle Scholar
  65. 65.
    Taylor-Weiner A et al (2016) Genomic evolution and chemoresistance in germ-cell tumours. Nature 540(7631):114–118.  https://doi.org/10.1038/nature20596 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Sperger JM et al (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci USA 100(23):13350–13355.  https://doi.org/10.1073/pnas.2235735100 CrossRefPubMedGoogle Scholar
  67. 67.
    de Jong J et al (2005) Diagnostic value of OCT3/4 for pre-invasive and invasive testicular germ cell tumours. J Pathol 206(2):242–249.  https://doi.org/10.1002/path.1766 CrossRefPubMedGoogle Scholar
  68. 68.
    Rajpert-De Meyts E, Skakkebaek NE (1994) Expression of the c-kit protein product in carcinoma-in situ and invasive testicular germ cell tumours. Int J Androl 17(2):85–92.  https://doi.org/10.1111/j.1365-2605.1994.tb01225.x CrossRefPubMedGoogle Scholar
  69. 69.
    Emerson RE, Ulbright TM (2010) Intratubular germ cell neoplasia of the testis and its associated cancers: the use of novel biomarkers. Pathology 42(4):344–355.  https://doi.org/10.3109/00313021003767355 CrossRefPubMedGoogle Scholar
  70. 70.
    Ota S et al (2006) Oncofetal protein glypican-3 in testicular germ-cell tumor. Virchows Arch 449(3):308–314.  https://doi.org/10.1007/s00428-006-0238-x CrossRefPubMedGoogle Scholar
  71. 71.
    Zynger DL et al (2010) Glypican 3 has a higher sensitivity than alpha-fetoprotein for testicular and ovarian yolk sac tumour: immunohistochemical investigation with analysis of histological growth patterns. Histopathology 56(6):750–757.  https://doi.org/10.1111/j.1365-2559.2010.03553.x CrossRefPubMedGoogle Scholar
  72. 72.
    Cao D et al (2009) SALL4 is a novel diagnostic marker for testicular germ cell tumors. Am J Surg Pathol 33(7):1065–1077.  https://doi.org/10.1097/PAS.0b013e3181a13eef CrossRefPubMedGoogle Scholar
  73. 73.
    Shen H et al (2018) Integrated molecular characterization of testicular germ cell tumors. Cell Rep 23(11):3392–3406.  https://doi.org/10.1016/j.celrep.2018.05.039 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Skakkebaek NE, Berthelsen JG (1981) Carcinoma-in situ of the testis and invasive growth of different types of germ cell tumours. A revised germ cell theory. Int J Androl 4(Suppl s4):26–33.  https://doi.org/10.1111/j.1365-2605.1981.tb00647.x CrossRefPubMedGoogle Scholar
  75. 75.
    Rajpert-De Meyts E, Kvist M, Skakkebaek NE (1996) Heterogeneity of expression of immunohistochemical tumour markers in testicular carcinoma in situ: pathogenetic relevance. Virchows Arch 428(3):133–139.  https://doi.org/10.1007/BF00200655 CrossRefPubMedGoogle Scholar
  76. 76.
    de Graaff WE et al (1992) Ploidy of testicular carcinoma in situ. Lab Investig 66(2):166–168.  https://doi.org/10.1007/s00761-005-0952-z CrossRefPubMedGoogle Scholar
  77. 77.
    de Jong B et al (1990) Pathogenesis of adult testicular germ cell tumors. A cytogenetic model. Cancer Genet Cytogenet 48(2):143–167.  https://doi.org/10.1016/0165-4608(90)90115-Q CrossRefPubMedGoogle Scholar
  78. 78.
    Srigley JR et al (1988) The ultrastructure and histogenesis of male germ neoplasia with emphasis on seminoma with early carcinomatous features. Ultrastruct Pathol 12(1):67–86.  https://doi.org/10.3109/01913128809048477 CrossRefPubMedGoogle Scholar
  79. 79.
    Kernek KM et al (2003) Identical allelic losses in mature teratoma and other histologic components of malignant mixed germ cell tumors of the testis. Am J Pathol 163(6):2477–2484.  https://doi.org/10.1016/S0002-9440(10)63602-4 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Jones TD et al (2006) Clonal origin of metastatic testicular teratomas. Clin Cancer Res 12(18):5377–5383.  https://doi.org/10.1158/1078-0432.CCR-06-0444 CrossRefPubMedGoogle Scholar
  81. 81.
    Nettersheim D et al (2012) Establishment of a versatile seminoma model indicates cellular plasticity of germ cell tumor cells. Genes Chromosomes Cancer 51(7):717–726.  https://doi.org/10.1002/gcc.21958 CrossRefPubMedGoogle Scholar
  82. 82.
    Nettersheim D et al (2015) BMP inhibition in seminomas initiates acquisition of pluripotency via NODAL signaling resulting in reprogramming to an embryonal carcinoma. PLoS Genet 11(7):e1005415.  https://doi.org/10.1371/journal.pgen.1005415 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Nettersheim D et al (2016) SOX2 is essential for in vivo reprogramming of seminoma-like TCam-2 cells to an embryonal carcinoma-like fate. Oncotarget 7(30):47095–47110.  https://doi.org/10.18632/oncotarget.9903 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Hemminki K, Li X (2004) Familial risk in testicular cancer as a clue to a heritable and environmental aetiology. Br J Cancer 90(9):1765–1770.  https://doi.org/10.1038/sj.bjc.6601714 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Chia VM et al (2009) Risk of cancer in first- and second-degree relatives of testicular germ cell tumor cases and controls. Int J Cancer 124(4):952–957.  https://doi.org/10.1002/ijc.23971 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Neale RE et al (2008) Testicular cancer in twins: a meta-analysis. Br J Cancer 98(1):171–173.  https://doi.org/10.1038/sj.bjc.6604136 CrossRefPubMedGoogle Scholar
  87. 87.
    Swerdlow AJ et al (1997) Risks of breast and testicular cancers in young adult twins in England and Wales: evidence on prenatal and genetic aetiology. Lancet 350(9093):1723–1728.  https://doi.org/10.1016/s0140-6736(97)05526-8 CrossRefPubMedGoogle Scholar
  88. 88.
    Teh BT et al (1999) Familial testicular cancer: lack of evidence for trinucleotide repeat expansions and association with PKD1 in one family. J Med Genet 36(4):348–349.  https://doi.org/10.1046/j.1365-2788.1999.00200.x CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Kanetsky PA et al (2009) Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet 41(7):811–815.  https://doi.org/10.1038/ng.393 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Rapley EA et al (2009) A genome-wide association study of testicular germ cell tumor. Nat Genet 41(7):807–810.  https://doi.org/10.1038/ng.394 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Turnbull C et al (2010) Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet 42(7):604–607.  https://doi.org/10.1038/ng.607 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kanetsky PA et al (2011) A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Hum Mol Genet 20(15):3109–3117.  https://doi.org/10.1093/hmg/ddr207 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Dalgaard MD et al (2012) A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation. J Med Genet 49(1):58–65.  https://doi.org/10.1136/jmedgenet-2011-100174 CrossRefPubMedGoogle Scholar
  94. 94.
    Chung CC et al (2013) Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat Genet 45(6):680–685.  https://doi.org/10.1038/ng.2634 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ruark E et al (2013) Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14. Nat Genet 45(6):686–689.  https://doi.org/10.1038/ng.2635 CrossRefPubMedGoogle Scholar
  96. 96.
    Schumacher FR et al (2013) Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Hum Mol Genet 22(13):2748–2753.  https://doi.org/10.1093/hmg/ddt109 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Litchfield K et al (2015) Multi-stage genome-wide association study identifies new susceptibility locus for testicular germ cell tumour on chromosome 3q25. Hum Mol Genet 24(4):1169–1176.  https://doi.org/10.1093/hmg/ddu511 CrossRefPubMedGoogle Scholar
  98. 98.
    Kristiansen W et al (2015) Two new loci and gene sets related to sex determination and cancer progression are associated with susceptibility to testicular germ cell tumor. Hum Mol Genet 24(14):4138–4146.  https://doi.org/10.1093/hmg/ddv129 CrossRefPubMedGoogle Scholar
  99. 99.
    Litchfield K et al (2017) Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nat Genet 49(7):1133–1140.  https://doi.org/10.1038/ng.3896 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Wang Z et al (2017) Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nat Genet 49(7):1141–1147.  https://doi.org/10.1038/ng.3879 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Paumard-Hernandez B et al (2018) Whole exome sequencing identifies PLEC, EXO5 and DNAH7 as novel susceptibility genes in testicular cancer. Int J Cancer 143(8):1954–1962.  https://doi.org/10.1002/ijc.31604 CrossRefPubMedGoogle Scholar
  102. 102.
    Runyan C et al (2006) Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133(24):4861–4869.  https://doi.org/10.1242/dev.02688 CrossRefPubMedGoogle Scholar
  103. 103.
    Yamaji M et al (2008) Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 40(8):1016–1022.  https://doi.org/10.1038/ng.186 CrossRefPubMedGoogle Scholar
  104. 104.
    Matson CK et al (2010) The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev Cell 19(4):612–624.  https://doi.org/10.1016/j.devcel.2010.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Gill ME et al (2011) Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci USA 108(18):7443–7448.  https://doi.org/10.1073/pnas.1104501108 CrossRefPubMedGoogle Scholar
  106. 106.
    Seetharam V et al (2014) Bilateral cryptorchidism with bilateral synchronous abdominal testicular germ cell tumour. BMJ Case Rep.  https://doi.org/10.1136/bcr-2013-203085 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Chemes HE et al (2015) Is a CIS phenotype apparent in children with disorders of sex development? Milder testicular dysgenesis is associated with a higher risk of malignancy. Andrology 3(1):59–69.  https://doi.org/10.1111/andr.301 CrossRefPubMedGoogle Scholar
  108. 108.
    Machiela MJ et al (2017) Mosaic chromosome Y loss and testicular germ cell tumor risk. J Hum Genet 62(6):637–640.  https://doi.org/10.1038/jhg.2017.20 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Dieckmann KP et al (2014) Contralateral testicular biopsy in patients with germ cell tumors: practice patterns in Germany 2014. Urologe A 53(11):1651–1655.  https://doi.org/10.1007/s00120-014-3657-3 CrossRefPubMedGoogle Scholar
  110. 110.
    Morimoto LM et al (2018) Neonatal hormone concentrations and risk of testicular germ cell tumors (TGCT). Cancer Epidemiol Biomark Prev 27(4):488–495.  https://doi.org/10.1158/1055-9965.EPI-17-0879 CrossRefGoogle Scholar
  111. 111.
    Matin A et al (1999) Susceptibility to testicular germ-cell tumours in a 129.MOLF-Chr 19 chromosome substitution strain. Nat Genet 23(2):237–240.  https://doi.org/10.1038/13874 CrossRefPubMedGoogle Scholar
  112. 112.
    Zhu R, Matin A (2014) Tumor loci and their interactions on mouse chromosome 19 that contribute to testicular germ cell tumors. BMC Genet 15:65.  https://doi.org/10.1186/1471-2156-15-65 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Heaney JD et al (2012) Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development 139(9):1577–1586.  https://doi.org/10.1242/dev.076851 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Spiller CM et al (2012) Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development 139(22):4123–4132.  https://doi.org/10.1242/dev.083006 CrossRefPubMedGoogle Scholar
  115. 115.
    Dawson EP et al (2018) Delayed male germ cell sex-specification permits transition into embryonal carcinoma cells with features of primed pluripotency. Development.  https://doi.org/10.1242/dev.156612 CrossRefPubMedGoogle Scholar
  116. 116.
    Krentz AD et al (2009) The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc Natl Acad Sci USA 106(52):22323–22328.  https://doi.org/10.1073/pnas.0905431106 CrossRefPubMedGoogle Scholar
  117. 117.
    Heaney JD et al (2008) Loss of the transmembrane but not the soluble kit ligand isoform increases testicular germ cell tumor susceptibility in mice. Cancer Res 68(13):5193–5197.  https://doi.org/10.1158/0008-5472.CAN-08-0779 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Youngren KK et al (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435(7040):360–364.  https://doi.org/10.1038/nature03595 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Kimura T et al (2003) Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development 130(8):1691–1700.  https://doi.org/10.1242/dev.00392 CrossRefPubMedGoogle Scholar
  120. 120.
    Carouge D et al (2016) Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc Natl Acad Sci USA 113(37):E5425–E5433.  https://doi.org/10.1073/pnas.1604773113 CrossRefPubMedGoogle Scholar
  121. 121.
    Li H et al (2016) Impaired planar germ cell division in the testis, caused by dissociation of RHAMM from the spindle, results in hypofertility and seminoma. Cancer Res 76(21):6382–6395.  https://doi.org/10.1158/0008-5472.CAN-16-0179 CrossRefPubMedGoogle Scholar
  122. 122.
    Pierpont TM et al (2017) Chemotherapy-induced depletion of OCT4-positive cancer stem cells in a mouse model of malignant testicular cancer. Cell Rep 21(7):1896–1909.  https://doi.org/10.1016/j.celrep.2017.10.078 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Barlow LJ, Badalato GM, McKiernan JM (2010) Serum tumor markers in the evaluation of male germ cell tumors. Nat Rev Urol 7(11):610–617.  https://doi.org/10.1038/nrurol.2010.166 CrossRefPubMedGoogle Scholar
  124. 124.
    Murray MJ, Huddart RA, Coleman N (2016) The present and future of serum diagnostic tests for testicular germ cell tumours. Nat Rev Urol 13(12):715–725.  https://doi.org/10.1038/nrurol.2016.170 CrossRefPubMedGoogle Scholar
  125. 125.
    Spiekermann M et al (2015) MicroRNA miR-371a-3p in serum of patients with germ cell tumours: evaluations for establishing a serum biomarker. Andrology 3(1):78–84.  https://doi.org/10.1111/j.2047-2927.2014.00269.x CrossRefPubMedGoogle Scholar
  126. 126.
    Syring I et al (2015) Circulating serum miRNA (miR-367-3p, miR-371a-3p, miR-372-3p and miR-373-3p) as biomarkers in patients with testicular germ cell cancer. J Urol 193(1):331–337.  https://doi.org/10.1016/j.juro.2014.07.010 CrossRefPubMedGoogle Scholar
  127. 127.
    Murray MJ et al (2016) A pipeline to quantify serum and cerebrospinal fluid microRNAs for diagnosis and detection of relapse in paediatric malignant germ-cell tumours. Br J Cancer 114(2):151–162.  https://doi.org/10.1038/bjc.2015.429 CrossRefPubMedGoogle Scholar
  128. 128.
    Gillis AJ et al (2013) Targeted serum miRNA (TSmiR) test for diagnosis and follow-up of (testicular) germ cell cancer patients: a proof of principle. Mol Oncol 7(6):1083–1092.  https://doi.org/10.1016/j.molonc.2013.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Terbuch A et al (2018) MiR-371a-3p serum levels are increased in recurrence of testicular germ cell tumor patients. Int J Mol Sci.  https://doi.org/10.3390/ijms19103130 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Tu SM et al (2016) Intratumoral heterogeneity: role of differentiation in a potentially lethal phenotype of testicular cancer. Cancer 122(12):1836–1843.  https://doi.org/10.1002/cncr.29996 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Comiter CV et al (1998) Prognostic features of teratomas with malignant transformation: a clinicopathological study of 21 cases. J Urol 159(3):859–863.  https://doi.org/10.1016/S0022-5347(01)63754-6 CrossRefPubMedGoogle Scholar
  132. 132.
    Bartkova J et al (2007) DNA damage response in human testes and testicular germ cell tumours: biology and implications for therapy. Int J Androl 30(4):282–291.  https://doi.org/10.1111/j.1365-2605.2007.00772.x (discussion 291) CrossRefPubMedGoogle Scholar
  133. 133.
    Cavallo F, Feldman DR, Barchi M (2013) Revisiting DNA damage repair, p53-mediated apoptosis and cisplatin sensitivity in germ cell tumors. Int J Dev Biol 57(2–4):273–280.  https://doi.org/10.1387/ijdb.130135mb CrossRefPubMedGoogle Scholar
  134. 134.
    Peng HQ et al (1993) Mutations of the p53 gene do not occur in testis cancer. Cancer Res 53(15):3574–3578.  https://doi.org/10.1007/BF01525437 CrossRefPubMedGoogle Scholar
  135. 135.
    Gutekunst M et al (2011) p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS One 6(4):e19198.  https://doi.org/10.1371/journal.pone.0019198 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Awuah SG, Riddell IA, Lippard SJ (2017) Repair shielding of platinum-DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity. Proc Natl Acad Sci USA 114(5):950–955.  https://doi.org/10.1073/pnas.1615327114 CrossRefPubMedGoogle Scholar
  137. 137.
    Oechsle K et al (2011) Long-term survival after treatment with gemcitabine and oxaliplatin with and without paclitaxel plus secondary surgery in patients with cisplatin-refractory and/or multiply relapsed germ cell tumors. Eur Urol 60(4):850–855.  https://doi.org/10.1016/j.eururo.2011.06.019 CrossRefPubMedGoogle Scholar
  138. 138.
    Juliachs M et al (2014) The PDGFRbeta-AKT pathway contributes to CDDP-acquired resistance in testicular germ cell tumors. Clin Cancer Res 20(3):658–667.  https://doi.org/10.1158/1078-0432.CCR-13-1131 CrossRefPubMedGoogle Scholar
  139. 139.
    Lopez-Saavedra A et al (2016) MAD2gamma, a novel MAD2 isoform, reduces mitotic arrest and is associated with resistance in testicular germ cell tumors. Cell Cycle 15(15):2066–2076.  https://doi.org/10.1080/15384101.2016.1198863 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Koster R et al (2010) Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest 120(10):3594–3605.  https://doi.org/10.1172/JCI41939 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Koster R et al (2011) Disruption of the MDM2-p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell Death Dis 2:e148.  https://doi.org/10.1038/cddis.2011.33 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Liu L et al (2013) MicroRNA-302a sensitizes testicular embryonal carcinoma cells to cisplatin-induced cell death. J Cell Physiol 228(12):2294–2304.  https://doi.org/10.1002/jcp.24394 CrossRefPubMedGoogle Scholar
  143. 143.
    Huang H et al (2014) microRNA-383 impairs phosphorylation of H2AX by targeting PNUTS and inducing cell cycle arrest in testicular embryonal carcinoma cells. Cell Signal 26(5):903–911.  https://doi.org/10.1016/j.cellsig.2014.01.016 CrossRefPubMedGoogle Scholar
  144. 144.
    Nitzsche B et al (2012) Anti-tumour activity of two novel compounds in cisplatin-resistant testicular germ cell cancer. Br J Cancer 107(11):1853–1863.  https://doi.org/10.1038/bjc.2012.481 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Cavallo F et al (2012) Reduced proficiency in homologous recombination underlies the high sensitivity of embryonal carcinoma testicular germ cell tumors to cisplatin and poly (adp-ribose) polymerase inhibition. PLoS One 7(12):e51563.  https://doi.org/10.1371/journal.pone.0051563 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Litchfield K et al (2015) Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat Commun 6:5973.  https://doi.org/10.1038/ncomms6973 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Honecker F et al (2009) Microsatellite instability, mismatch repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J Clin Oncol 27(13):2129–2136.  https://doi.org/10.1200/JCO.2008.18.8623 CrossRefPubMedGoogle Scholar
  148. 148.
    Feldman DR et al (2014) Presence of somatic mutations within PIK3CA, AKT, RAS, and FGFR3 but not BRAF in cisplatin-resistant germ cell tumors. Clin Cancer Res 20(14):3712–3720.  https://doi.org/10.1158/1078-0432.CCR-13-2868 CrossRefPubMedGoogle Scholar
  149. 149.
    de Haas EC et al (2008) Variation in bleomycin hydrolase gene is associated with reduced survival after chemotherapy for testicular germ cell cancer. J Clin Oncol 26(11):1817–1823.  https://doi.org/10.1200/JCO.2007.14.1606 CrossRefPubMedGoogle Scholar
  150. 150.
    de Haas EC et al (2010) Association of PAI-1 gene polymorphism with survival and chemotherapy-related vascular toxicity in testicular cancer. Cancer 116(24):5628–5636.  https://doi.org/10.1002/cncr.25300 CrossRefPubMedGoogle Scholar
  151. 151.
    Oldenburg J et al (2007) Cisplatin-induced long-term hearing impairment is associated with specific glutathione s-transferase genotypes in testicular cancer survivors. J Clin Oncol 25(6):708–714.  https://doi.org/10.1200/JCO.2006.08.9599 CrossRefPubMedGoogle Scholar
  152. 152.
    Fung C et al (2012) Chemotherapy refractory testicular germ cell tumor is associated with a variant in armadillo repeat gene deleted in velco-cardio-facial syndrome (ARVCF). Front Endocrinol (Lausanne) 3:163.  https://doi.org/10.3389/fendo.2012.00163 CrossRefGoogle Scholar
  153. 153.
    Ross CJ et al (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41(12):1345–1349.  https://doi.org/10.1038/ng.478 CrossRefPubMedGoogle Scholar
  154. 154.
    Bagrodia A et al (2016) Genetic determinants of cisplatin resistance in patients with advanced germ cell tumors. J Clin Oncol 34(33):4000–4007.  https://doi.org/10.1200/JCO.2016.68.7798 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Seidel C et al (2016) Efficacy and safety of gemcitabine, oxaliplatin, and paclitaxel in cisplatin-refractory germ cell cancer in routine care—registry data from an outcomes research project of the German Testicular Cancer Study Group. Urol Oncol 34(4):167.e21–167.e28.  https://doi.org/10.1016/j.urolonc.2015.11.007 CrossRefGoogle Scholar
  156. 156.
    Oechsle K et al (2011) Preclinical and clinical activity of sunitinib in patients with cisplatin-refractory or multiply relapsed germ cell tumors: a Canadian Urologic Oncology Group/German Testicular Cancer Study Group cooperative study. Ann Oncol 22(12):2654–2660.  https://doi.org/10.1093/annonc/mdr026 CrossRefPubMedGoogle Scholar
  157. 157.
    Jain A et al (2014) Phase II clinical trial of oxaliplatin and bevacizumab in refractory germ cell tumors. Am J Clin Oncol 37(5):450–453.  https://doi.org/10.1097/COC.0b013e31827de90d CrossRefPubMedGoogle Scholar
  158. 158.
    Mego M et al (2016) Phase II study of everolimus in refractory testicular germ cell tumors. Urol Oncol 34(3):122.e117–122.e122.  https://doi.org/10.1016/j.urolonc.2015.10.010 CrossRefGoogle Scholar
  159. 159.
    Ozata DM et al (2017) Loss of miR-514a-3p regulation of PEG3 activates the NF-kappa B pathway in human testicular germ cell tumors. Cell Death Dis 8(5):e2759.  https://doi.org/10.1038/cddis.2016.464 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Rijlaarsdam MA et al (2015) Identification of known and novel germ cell cancer-specific (embryonic) miRs in serum by high-throughput profiling. Andrology 3(1):85–91.  https://doi.org/10.1111/andr.298 CrossRefPubMedGoogle Scholar
  161. 161.
    Cheung HH et al (2011) Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 30(31):3404–3415.  https://doi.org/10.1038/onc.2011.60 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Chen BF et al (2014) A miR-199a/miR-214 self-regulatory network via PSMD10, TP53 and DNMT1 in testicular germ cell tumor. Sci Rep 4:6413.  https://doi.org/10.1038/srep06413 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Liu J et al (2017) miR2233p regulates cell growth and apoptosis via FBXW7 suggesting an oncogenic role in human testicular germ cell tumors. Int J Oncol 50(2):356–364.  https://doi.org/10.3892/ijo.2016.3807 CrossRefPubMedGoogle Scholar
  164. 164.
    Yang NQ et al (2014) miRNA-1297 induces cell proliferation by targeting phosphatase and tensin homolog in testicular germ cell tumor cells. Asian Pac J Cancer Prev 15(15):6243–6246CrossRefPubMedGoogle Scholar
  165. 165.
    Yang NQ et al (2016) Crosstalk between Meg3 and miR-1297 regulates growth of testicular germ cell tumor through PTEN/PI3K/AKT pathway. Am J Transl Res 8(2):1091–1099PubMedPubMedCentralGoogle Scholar
  166. 166.
    Cerami E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404.  https://doi.org/10.1158/2159-8290.CD-12-0095 CrossRefPubMedGoogle Scholar
  167. 167.
    Gao J et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1.  https://doi.org/10.1126/scisignal.2004088 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Cutcutache I et al (2015) Exome-wide sequencing shows low mutation rates and identifies novel mutated genes in seminomas. Eur Urol 68(1):77–83.  https://doi.org/10.1016/j.eururo.2014.12.040 CrossRefPubMedGoogle Scholar
  169. 169.
    Litchfield K et al (2016) Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility. Nat Commun 7:13840.  https://doi.org/10.1038/ncomms13840 CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Mikuz G, Colecchia M (2012) Teratoma with somatic-type malignant components of the testis. A review and an update. Virchows Arch 461(1):27–32.  https://doi.org/10.1007/s00428-012-1251-x CrossRefPubMedGoogle Scholar
  171. 171.
    Giannatempo P et al (2016) Treatment and clinical outcomes of patients with teratoma with somatic-type malignant transformation: an international collaboration. J Urol 196(1):95–100.  https://doi.org/10.1016/j.juro.2015.12.082 CrossRefPubMedGoogle Scholar
  172. 172.
    Bondarenko G et al (2015) Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. Neoplasia 17(9):735–741.  https://doi.org/10.1016/j.neo.2015.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Wetterauer C et al (2015) Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate 75(6):585–592.  https://doi.org/10.1002/pros.22939 CrossRefPubMedGoogle Scholar
  174. 174.
    Colombo PE et al (2015) Ovarian carcinoma patient derived xenografts reproduce their tumor of origin and preserve an oligoclonal structure. Oncotarget 6(29):28327–28340.  https://doi.org/10.18632/oncotarget.5069 CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Ben-David U et al (2017) Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet 49(11):1567–1575.  https://doi.org/10.1038/ng.3967 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Mazzieri R et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19(4):512–526.  https://doi.org/10.1016/j.ccr.2011.02.005 CrossRefPubMedGoogle Scholar
  177. 177.
    Hvarness T et al (2013) Phenotypic characterisation of immune cell infiltrates in testicular germ cell neoplasia. J Reprod Immunol 100(2):135–145.  https://doi.org/10.1016/j.jri.2013.10.005 CrossRefPubMedGoogle Scholar
  178. 178.
    Siska PJ et al (2017) Deep exploration of the immune infiltrate and outcome prediction in testicular cancer by quantitative multiplexed immunohistochemistry and gene expression profiling. Oncoimmunology 6(4):e1305535.  https://doi.org/10.1080/2162402X.2017.1305535 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Cheng L, Lyu B, Roth LM (2017) Perspectives on testicular germ cell neoplasms. Hum Pathol 59:10–25.  https://doi.org/10.1016/j.humpath.2016.08.002 CrossRefPubMedGoogle Scholar
  180. 180.
    Milia-Argeiti E et al (2014) EMMPRIN/CD147-encriched membrane vesicles released from malignant human testicular germ cells increase MMP production through tumor-stroma interaction. Biochim Biophys Acta 1840(8):2581–2588.  https://doi.org/10.1016/j.bbagen.2014.02.026 CrossRefPubMedGoogle Scholar
  181. 181.
    Bi XC et al (2012) Extracellular matrix metalloproteinase inducer: a novel poor prognostic marker for human seminomas. Clin Transl Oncol 14(3):190–196.  https://doi.org/10.1007/s12094-012-0783-5 CrossRefPubMedGoogle Scholar
  182. 182.
    Batool A et al (2018) A miR-125b/CSF1-CX3CL1/tumor-associated macrophage recruitment axis controls testicular germ cell tumor growth. Cell Death Dis 9(10):962.  https://doi.org/10.1038/s41419-018-1021-z CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Cierna Z et al (2016) Prognostic value of programmed-death-1 receptor (PD-1) and its ligand 1 (PD-L1) in testicular germ cell tumors. Ann Oncol 27(2):300–305.  https://doi.org/10.1093/annonc/mdv574 CrossRefPubMedGoogle Scholar
  184. 184.
    Shah S et al (2016) Clinical response of a patient to anti-PD-1 immunotherapy and the immune landscape of testicular germ cell tumors. Cancer Immunol Res 4(11):903–909.  https://doi.org/10.1158/2326-6066.CIR-16-0087 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Loh KP, Fung C (2017) Novel therapies in platinum-refractory metastatic germ cell tumor: a case report with a focus on a PD-1 inhibitor. Rare Tumors 9(2):6867.  https://doi.org/10.4081/rt.2017.6867 CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Adra N et al (2018) Phase II trial of pembrolizumab in patients with platinum refractory germ-cell tumors: a hoosier cancer research network study GU14-206. Ann Oncol 29(1):209–214.  https://doi.org/10.1093/annonc/mdx680 CrossRefPubMedGoogle Scholar
  187. 187.
    Okeley NM et al (2010) Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res 16(3):888–897.  https://doi.org/10.1158/1078-0432.CCR-09-2069 CrossRefPubMedGoogle Scholar
  188. 188.
    Ratta R et al (2016) Immunotherapy advances in uro-genital malignancies. Crit Rev Oncol Hematol 105:52–64.  https://doi.org/10.1016/j.critrevonc.2016.06.012 CrossRefPubMedGoogle Scholar
  189. 189.
    Schonberger S et al (2018) Brentuximab vedotin exerts profound antiproliferative and pro-apoptotic efficacy in CD30-positive as well as cocultured CD30-negative germ cell tumour cell lines. J Cell Mol Med 22(1):568–575.  https://doi.org/10.1111/jcmm.13344 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations