Advertisement

The functional roles of exosomal long non-coding RNAs in cancer

  • Man WangEmail author
  • Li Zhou
  • Fei Yu
  • Yinfeng Zhang
  • Peifeng Li
  • Kun WangEmail author
Review
  • 160 Downloads

Abstract

Exosomes are extracellular membranous vesicles that are secreted by various cell types. Exosomes have become indispensable facilitators in the exchange of information between cells. More importantly, exosomes perform a crucial role in a variety of diseases including cancers. Long non-coding RNAs (lncRNAs) are over 200 nucleotides long transcripts that exhibit no or limited protein-coding potentials. LncRNAs are an emerging group of regulatory RNAs and can be selectively packaged into exosomes. Exosomal lncRNAs play a central role in carcinogenesis and cancer progression by modulating tumor growth, metastasis, angiogenesis and chemoresistance. Moreover, exosomal lncRNAs function as messengers in cell-to-cell communication, and thus remodel the tumor microenvironment. Their function relevance in cancer biology hints at the possibility of employing exosomal lncRNAs as promising, non-invasive biomarkers for further cancer therapy. In this review, we provide an overview of current research on the functional roles of exosomal lncRNAs in cancer and discuss their potential clinical applications as diagnostic biomarkers and therapeutic targets for cancers.

Keywords

Exosomes Extracellular vesicles Exosome biogenesis Long non-coding RNA Cancer pathogenesis Cancer diagnosis Cancer therapy 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81701991) and Applied Basic Research Programs of Qingdao, China (17-1-1-59-jch).

Author contributions

MW and KW conceived this article. MW wrote the manuscript. LZ, FY and YZ helped to revise the manuscript. PL and KW did the final editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kalluri R (2016) The biology and function of exosomes in cancer. J Clin Invest 126(4):1208–1215.  https://doi.org/10.1172/JCI81135 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tomasetti M, Lee W, Santarelli L, Neuzil J (2017) Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med 49(1):e285.  https://doi.org/10.1038/emm.2016.153 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383.  https://doi.org/10.1083/jcb.201211138 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chettimada S, Lorenz DR, Misra V, Dillon ST, Reeves RK, Manickam C, Morgello S, Kirk GD, Mehta SH, Gabuzda D (2018) Exosome markers associated with immune activation and oxidative stress in HIV patients on antiretroviral therapy. Sci Rep 8(1):7227.  https://doi.org/10.1038/s41598-018-25515-4 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421.  https://doi.org/10.1186/1471-2407-12-421 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Yuan W (2018) Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 17(1):147.  https://doi.org/10.1186/s12943-018-0897-7 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A, Ivan C, Calin GA, Kalluri R (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26(5):707–721.  https://doi.org/10.1016/j.ccell.2014.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891.  https://doi.org/10.1038/nm.2753 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Qu JL, Qu XJ, Zhao MF, Teng YE, Zhang Y, Hou KZ, Jiang YH, Yang XH, Liu YP (2009) Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis 41(12):875–880.  https://doi.org/10.1016/j.dld.2009.04.006 CrossRefPubMedGoogle Scholar
  10. 10.
    Fu Q, Zhang Q, Lou Y, Yang J, Nie G, Chen Q, Chen Y, Zhang J, Wang J, Wei T, Qin H, Dang X, Bai X, Liang T (2018) Primary tumor-derived exosomes facilitate metastasis by regulating adhesion of circulating tumor cells via SMAD3 in liver cancer. Oncogene 37(47):6105–6118.  https://doi.org/10.1038/s41388-018-0391-0 CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Ludwig N, Yerneni SS, Razzo BM, Whiteside TL (2018) Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells. Mol Cancer Res 16(11):1798–1808.  https://doi.org/10.1158/1541-7786 CrossRefPubMedGoogle Scholar
  12. 12.
    Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R (2008) Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull 31(6):1059–1062CrossRefPubMedGoogle Scholar
  13. 13.
    Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887.  https://doi.org/10.1093/intimm/dxh267 CrossRefPubMedGoogle Scholar
  14. 14.
    Bryzgunova OE, Zaripov MM, Skvortsova TE, Lekchnov EA, Grigor’eva AE, Zaporozhchenko IA, Morozkin ES, Ryabchikova EI, Yurchenko YB, Voitsitskiy VE, Laktionov PP (2016) Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS One 11(6):e0157566.  https://doi.org/10.1371/journal.pone.0157566 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–719.  https://doi.org/10.4161/rna.20481 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166.  https://doi.org/10.1146/annurev-biochem-051410-092902 CrossRefPubMedGoogle Scholar
  17. 17.
    Feng S, Yao J, Chen Y, Geng P, Zhang H, Ma X, Zhao J, Yu X (2015) Expression and functional role of reprogramming-related long noncoding RNA (lincRNA-ROR) in Glioma. J Mol Neurosci 56(3):623–630.  https://doi.org/10.1007/s12031-014-0488-z CrossRefPubMedGoogle Scholar
  18. 18.
    Hu L, Wu Y, Tan D, Meng H, Wang K, Bai Y, Yang K (2015) Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 34:7.  https://doi.org/10.1186/s13046-015-0123-z CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jiang C, Yang Y, Guo L, Huang J, Liu X, Wu C, Zou J (2018) Long noncoding RNA (lncRNA) HOTAIR affects tumorigenesis and metastasis of non-small cell lung cancer by upregulating miR-613. Oncol Res 26(5):725–734.  https://doi.org/10.3727/096504017X15119467381615 CrossRefPubMedGoogle Scholar
  20. 20.
    Gu L, Lu LS, Zhou DL, Liu ZC (2018) UCA1 promotes cell proliferation and invasion of gastric cancer by targeting CREB1 sponging to miR-590-3p. Cancer Med 7(4):1253–1263.  https://doi.org/10.1002/cam4.1310 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kou N, Liu S, Li X, Li W, Zhong W, Gui L, Chai S, Ren X, Na R, Zeng T, Liu H (2018) H19 facilitates tongue squamous cell carcinoma migration and invasion via sponging miR-let-7. Oncol Res.  https://doi.org/10.3727/096504018x15202945197589 CrossRefPubMedGoogle Scholar
  22. 22.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659.  https://doi.org/10.1038/ncb1596 CrossRefPubMedGoogle Scholar
  23. 23.
    Enderle D, Spiel A, Coticchia CM, Berghoff E, Mueller R, Schlumpberger M, Sprenger-Haussels M, Shaffer JM, Lader E, Skog J, Noerholm M (2015) Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One 10(8):e0136133.  https://doi.org/10.1371/journal.pone.0136133 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Laurent LC, Abdel-Mageed AB, Adelson PD, Arango J, Balaj L, Breakefield X, Carlson E, Carter BS, Majem B, Chen CC, Cocucci E, Danielson K, Courtright A, Das S, Abd Elmageed ZY, Enderle D, Ezrin A, Ferrer M, Freedman J, Galas D, Gandhi R, Huentelman MJ, Van Keuren-Jensen K, Kalani Y, Kim Y, Krichevsky AM, Lai C, Lal-Nag M, Laurent CD, Leonardo T, Li F, Malenica I, Mondal D, Nejad P, Patel T, Raffai RL, Rubio R, Skog J, Spetzler R, Sun J, Tanriverdi K, Vickers K, Wang L, Wang Y, Wei Z, Weiner HL, Wong D, Yan IK, Yeri A, Gould S (2015) Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J Extracell Vesicles 4:26533.  https://doi.org/10.3402/jev.v4.26533 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou R, Chen KK, Zhang J, Xiao B, Huang Z, Ju C, Sun J, Zhang F, Lv XB, Huang G (2018) The decade of exosomal long RNA species: an emerging cancer antagonist. Mol Cancer 17(1):75.  https://doi.org/10.1186/s12943-018-0823-z CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhao R, Zhang Y, Zhang X, Yang Y, Zheng X, Li X, Liu Y (2018) Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer 17(1):68.  https://doi.org/10.1186/s12943-018-0817-x CrossRefPubMedGoogle Scholar
  27. 27.
    Dong L, Lin W, Qi P, Xu MD, Wu X, Ni S, Huang D, Weng WW, Tan C, Sheng W, Zhou X, Du X (2016) Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol Biomark Prev 25(7):1158–1166.  https://doi.org/10.1158/1055-9965.EPI-16-0006 CrossRefGoogle Scholar
  28. 28.
    Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21(2):139–146.  https://doi.org/10.1016/j.semcancer.2011.01.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Ludwig AK, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44(1):11–15.  https://doi.org/10.1016/j.biocel.2011.10.005 CrossRefPubMedGoogle Scholar
  30. 30.
    Abak A, Abhari A, Rahimzadeh S (2018) Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. Peer J 6:e4763.  https://doi.org/10.7717/peerj.4763 CrossRefPubMedGoogle Scholar
  31. 31.
    Liu Y, Gu Y, Cao X (2015) The exosomes in tumor immunity. Oncoimmunology 4(9):e1027472.  https://doi.org/10.1080/2162402X.2015.1027472 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14(3):5338–5366.  https://doi.org/10.3390/ijms14035338 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rossi M, Battafarano G, D’Agostini M, Del Fattore A (2018) The role of extracellular vesicles in bone metastasis. Int J Mol Sci 19(4):1136.  https://doi.org/10.3390/ijms19041136 CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593.  https://doi.org/10.1038/nri2567 CrossRefPubMedGoogle Scholar
  35. 35.
    de Gassart A, Geminard C, Hoekstra D, Vidal M (2004) Exosome secretion: the art of reutilizing nonrecycled proteins? Traffic 5(11):896–903.  https://doi.org/10.1111/j.1600-0854.2004.00223.x CrossRefPubMedGoogle Scholar
  36. 36.
    Kajimoto T, Okada T, Miya S, Zhang L, Nakamura S (2013) Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun 4:2712.  https://doi.org/10.1038/ncomms3712 CrossRefPubMedGoogle Scholar
  37. 37.
    Guo BB, Bellingham SA, Hill AF (2015) The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 290(6):3455–3467.  https://doi.org/10.1074/jbc.M114.605253 CrossRefPubMedGoogle Scholar
  38. 38.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247.  https://doi.org/10.1126/science.1153124 CrossRefPubMedGoogle Scholar
  39. 39.
    Kharaziha P, Ceder S, Li Q, Panaretakis T (2012) Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta 1826(1):103–111.  https://doi.org/10.1016/j.bbcan.2012.03.006 CrossRefPubMedGoogle Scholar
  40. 40.
    Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75(2):193–208.  https://doi.org/10.1007/s00018-017-2595-9 CrossRefPubMedGoogle Scholar
  41. 41.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30.  https://doi.org/10.1038/ncb2000 CrossRefPubMedGoogle Scholar
  42. 42.
    Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM (2016) Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 214(2):197–213.  https://doi.org/10.1083/jcb.201601025 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W (2015) Exosomes in cancer: small particle, big player. J Hematol Oncol 8:83.  https://doi.org/10.1186/s13045-015-0181-x CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sato-Kuwabara Y, Melo SA, Soares FA, Calin GA (2015) The fusion of two worlds: non-coding RNAs and extracellular vesicles—diagnostic and therapeutic implications (review). Int J Oncol 46(1):17–27.  https://doi.org/10.3892/ijo.2014.2712 CrossRefPubMedGoogle Scholar
  45. 45.
    van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228.  https://doi.org/10.1038/nrm.2017.125 CrossRefPubMedGoogle Scholar
  46. 46.
    Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282.  https://doi.org/10.1038/ncomms1285 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476.  https://doi.org/10.1038/ncb1800 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21.  https://doi.org/10.1016/j.ygyno.2008.04.033 CrossRefPubMedGoogle Scholar
  49. 49.
    Ragusa M, Barbagallo C, Cirnigliaro M, Battaglia R, Brex D, Caponnetto A, Barbagallo D, Di Pietro C, Purrello M (2017) Asymmetric RNA distribution among cells and their secreted exosomes: biomedical meaning and considerations on diagnostic applications. Front Mol Biosci 4:66.  https://doi.org/10.3389/fmolb.2017.00066 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sanchez-Madrid F (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980.  https://doi.org/10.1038/ncomms3980 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, Battistelli C, Alonzi T, Weisz A, Tripodi M (2016) The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep 17(3):799–808.  https://doi.org/10.1016/j.celrep.2016.09.031 CrossRefPubMedGoogle Scholar
  52. 52.
    Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Scalia M, Magnano A, Caltabiano R, Barbagallo D, Biondi A, Cappellani A, Basile F, Di Pietro C, Purrello M, Ragusa M (2018) LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA–RNA interactions. Mol Ther Nucleic Acids 12:229–241.  https://doi.org/10.1016/j.omtn.2018.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genom 10:556.  https://doi.org/10.1186/1471-2164-10-556 CrossRefGoogle Scholar
  54. 54.
    Gezer U, Ozgur E, Cetinkaya M, Isin M, Dalay N (2014) Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int 38(9):1076–1079.  https://doi.org/10.1002/cbin.10301 CrossRefPubMedGoogle Scholar
  55. 55.
    Kogure T, Yan IK, Lin WL, Patel T (2013) Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer 4(7–8):261–272.  https://doi.org/10.1177/1947601913499020 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41(9):761–772.  https://doi.org/10.1016/j.tibs.2016.07.003 CrossRefPubMedGoogle Scholar
  57. 57.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789.  https://doi.org/10.1101/gr.132159.111 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914.  https://doi.org/10.1016/j.molcel.2011.08.018 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Balas MM, Johnson AM (2018) Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Res 3(3):108–117.  https://doi.org/10.1016/j.ncrna.2018.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zheng R, Du M, Wang X, Xu W, Liang J, Wang W, Lv Q, Qin C, Chu H, Wang M, Yuan L, Qian J, Zhang Z (2018) Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer 17(1):143.  https://doi.org/10.1186/s12943-018-0880-3 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang J, Yang X, Li R, Wang L, Gu Y, Zhao Y, Huang KH, Cheng T, Yuan Y, Gao S (2018) Long non-coding RNA MYU promotes prostate cancer proliferation by mediating the miR-184/c-Myc axis. Oncol Rep 40(5):2814–2825.  https://doi.org/10.3892/or.2018.6661 CrossRefPubMedGoogle Scholar
  62. 62.
    Yang X, Wang L, Li R, Zhao Y, Gu Y, Liu S, Cheng T, Huang K, Yuan Y, Song D, Gao S (2018) The long non-coding RNA PCSEAT exhibits an oncogenic property in prostate cancer and functions as a competing endogenous RNA that associates with EZH2. Biochem Biophys Res Commun 502(2):262–268.  https://doi.org/10.1016/j.bbrc.2018.05.157 CrossRefPubMedGoogle Scholar
  63. 63.
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907):624–629.  https://doi.org/10.1038/nature01075 CrossRefPubMedGoogle Scholar
  64. 64.
    Li S, Wang Q, Qiang Q, Shan H, Shi M, Chen B, Zhao S, Yuan L (2015) Sp1-mediated transcriptional regulation of MALAT1 plays a critical role in tumor. J Cancer Res Clin Oncol 141(11):1909–1920.  https://doi.org/10.1007/s00432-015-1951-0 CrossRefPubMedGoogle Scholar
  65. 65.
    Gutschner T, Hammerle M, Diederichs S (2013) MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl) 91(7):791–801.  https://doi.org/10.1007/s00109-013-1028-y CrossRefGoogle Scholar
  66. 66.
    Tano K, Mizuno R, Okada T, Rakwal R, Shibato J, Masuo Y, Ijiri K, Akimitsu N (2010) MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett 584(22):4575–4580.  https://doi.org/10.1016/j.febslet.2010.10.008 CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X, Wang Y, Ming H (2017) Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun 490(2):406–414.  https://doi.org/10.1016/j.bbrc.2017.06.055 CrossRefPubMedGoogle Scholar
  68. 68.
    Zhang P, Zhou H, Lu K, Lu Y, Wang Y, Feng T (2018) Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer. Onco Targets Ther 11:291–299.  https://doi.org/10.2147/OTT.S155134 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Xue M, Chen W, Xiang A, Wang R, Chen H, Pan J, Pang H, An H, Wang X, Hou H, Li X (2017) Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer 16(1):143.  https://doi.org/10.1186/s12943-017-0714-8 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Jiang JH, Liu C, Cheng H, Lu Y, Qin Y, Xu YF, Xu J, Long J, Liu L, Ni QX (1855) Yu XJ (2015) Epithelial-mesenchymal transition in pancreatic cancer: is it a clinically significant factor? Biochim Biophys Acta 1:43–49.  https://doi.org/10.1016/j.bbcan.2014.11.004 CrossRefGoogle Scholar
  71. 71.
    Soundararajan R, Paranjape AN, Maity S, Aparicio A, Mani SA (2018) EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta 1870(2):229–238.  https://doi.org/10.1016/j.bbcan.2018.06.006 CrossRefGoogle Scholar
  72. 72.
    Pan L, Liang W, Fu M, Huang ZH, Li X, Zhang W, Zhang P, Qian H, Jiang PC, Xu WR, Zhang X (2017) Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol 143(6):991–1004.  https://doi.org/10.1007/s00432-017-2361-2 CrossRefPubMedGoogle Scholar
  73. 73.
    Wang X, Li H, Lu X, Wen C, Huo Z, Shi M, Tang X, Chen H, Peng C, Fang Y, Deng X, Shen B (2018) Melittin-induced long non-coding RNA NONHSAT105177 inhibits proliferation and migration of pancreatic ductal adenocarcinoma. Cell Death Dis 9(10):940.  https://doi.org/10.1038/s41419-018-0965-3 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Li Z, Jiang P, Li J, Peng M, Zhao X, Zhang X, Chen K, Zhang Y, Liu H, Gan L, Bi H, Zhen P, Zhu J, Li X (2018) Tumor-derived exosomal lnc-Sox2ot promotes EMT and stemness by acting as a ceRNA in pancreatic ductal adenocarcinoma. Oncogene 37(28):3822–3838.  https://doi.org/10.1038/s41388-018-0237-9 CrossRefPubMedGoogle Scholar
  75. 75.
    Hardin H, Helein H, Meyer K, Robertson S, Zhang R, Zhong W, Lloyd RV (2018) Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. Lab Invest 98(9):1133–1142.  https://doi.org/10.1038/s41374-018-0065-0 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Li B, Mao R, Liu C, Zhang W, Tang Y, Guo Z (2018) LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci 197:122–129.  https://doi.org/10.1016/j.lfs.2018.02.006 CrossRefPubMedGoogle Scholar
  77. 77.
    Wu DM, Deng SH, Liu T, Han R, Zhang T, Xu Y (2018) TGF-beta-mediated exosomal lnc-MMP2-2 regulates migration and invasion of lung cancer cells to the vasculature by promoting MMP2 expression. Cancer Med 7(10):5118–5129.  https://doi.org/10.1002/cam4.1758 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Takahashi K, Ota Y, Suzuki Y, Iwamoto H, Yamakita K, Kitano Y, Sudo R, Tamaki Y, Okada M, Aso K, Makino Y, Haneda M (2015) Sa1818 extracellular vesicle-encapsulated long non-coding RNA HULC modulates epithelial–mesenchymal transition in human pancreatic cancer. Gastroenterology 148:S340–S341CrossRefGoogle Scholar
  79. 79.
    Gao T, Liu X, He B, Nie Z, Zhu C, Zhang P, Wang S (2018) Exosomal lncRNA 91H is associated with poor development in colorectal cancer by modifying HNRNPK expression. Cancer Cell Int 18:11.  https://doi.org/10.1186/s12935-018-0506-2 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Klimek-Tomczak K, Mikula M, Dzwonek A, Paziewska A, Karczmarski J, Hennig E, Bujnicki JM, Bragoszewski P, Denisenko O, Bomsztyk K, Ostrowski J (2006) Editing of hnRNP K protein mRNA in colorectal adenocarcinoma and surrounding mucosa. Br J Cancer 94(4):586–592.  https://doi.org/10.1038/sj.bjc.6602938 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Roychoudhury P, Chaudhuri K (2007) Evidence for heterogeneous nuclear ribonucleoprotein K overexpression in oral squamous cell carcinoma. Br J Cancer 97(4):574–575.  https://doi.org/10.1038/sj.bjc.6603911 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Inoue A, Sawata SY, Taira K, Wadhwa R (2007) Loss-of-function screening by randomized intracellular antibodies: identification of hnRNP-K as a potential target for metastasis. Proc Natl Acad Sci USA 104(21):8983–8988.  https://doi.org/10.1073/pnas.0607595104 CrossRefPubMedGoogle Scholar
  83. 83.
    Ding L, Ren J, Zhang D, Li Y, Huang X, Hu Q, Wang H, Song Y, Ni Y, Hou Y (2018) A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of oral squamous cell carcinoma via LncRNA-CAF/interleukin-33. Carcinogenesis 39(3):397–406.  https://doi.org/10.1093/carcin/bgy006 CrossRefPubMedGoogle Scholar
  84. 84.
    Herrera M, Llorens C, Rodriguez M, Herrera A, Ramos R, Gil B, Candia A, Larriba MJ, Garre P, Earl J, Rodriguez-Garrote M, Caldes T, Bonilla F, Carrato A, Garcia-Barberan V, Pena C (2018) Differential distribution and enrichment of non-coding RNAs in exosomes from normal and cancer-associated fibroblasts in colorectal cancer. Mol Cancer 17(1):114.  https://doi.org/10.1186/s12943-018-0863-4 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T, Hou Y (2018) Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 8(14):3932–3948.  https://doi.org/10.7150/thno.25541 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao HP, Rycaj K, Takata Y, Lin K, Lu Y, Zhong Y, Krolewski J, Shen J, Tang DG (2017) MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun 8:14270.  https://doi.org/10.1038/ncomms14270 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, Cao W, Han C, Chen Y (2006) Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 80(3):267–274.  https://doi.org/10.1016/j.yexmp.2005.07.004 CrossRefPubMedGoogle Scholar
  88. 88.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563.  https://doi.org/10.1038/nature06188 CrossRefPubMedGoogle Scholar
  89. 89.
    Wang S, Li X, Zhu R, Han Q, Zhao RC (2016) Lung cancer exosomes initiate global long non-coding RNA changes in mesenchymal stem cells. Int J Oncol 48(2):681–689.  https://doi.org/10.3892/ijo.2015.3272 CrossRefPubMedGoogle Scholar
  90. 90.
    Giuliani N, Rizzoli V, Roodman GD (2006) Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood 108(13):3992–3996.  https://doi.org/10.1182/blood-2006-05-026112 CrossRefPubMedGoogle Scholar
  91. 91.
    Raje N, Roodman GD (2011) Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res 17(6):1278–1286.  https://doi.org/10.1158/1078-0432.CCR-10-1804 CrossRefPubMedGoogle Scholar
  92. 92.
    Li B, Xu H, Han H, Song S, Zhang X, Ouyang L, Qian C, Hong Y, Qiu Y, Zhou W, Huang M, Zhuang W (2018) Exosome-mediated transfer of lncRUNX2-AS1 from multiple myeloma cells to MSCs contributes to osteogenesis. Oncogene 37(41):5508–5519.  https://doi.org/10.1038/s41388-018-0359-0 CrossRefPubMedGoogle Scholar
  93. 93.
    Stechschulte LA, Ge C, Hinds TD Jr, Sanchez ER, Franceschi RT, Lecka-Czernik B (2016) Protein phosphatase PP5 controls bone mass and the negative effects of rosiglitazone on bone through reciprocal regulation of PPARgamma (peroxisome proliferator-activated receptor gamma) and RUNX2 (runt-related transcription factor 2). J Biol Chem 291(47):24475–24486.  https://doi.org/10.1074/jbc.M116.752493 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Wu Q, Wu X, Ying X, Zhu Q, Wang X, Jiang L, Chen X, Wu Y (2017) Suppression of endothelial cell migration by tumor associated macrophage-derived exosomes is reversed by epithelial ovarian cancer exosomal lncRNA. Cancer Cell Int 17:62.  https://doi.org/10.1186/s12935-017-0430-x CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Li X, Lei Y, Wu M, Li N (2018) Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339. Int J Mol Sci 19(10):2958.  https://doi.org/10.3390/ijms19102958 CrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hede K (2004) Environmental protection: studies highlight importance of tumor microenvironment. J Natl Cancer Inst 96(15):1120–1121.  https://doi.org/10.1093/jnci/96.15.1120 CrossRefPubMedGoogle Scholar
  97. 97.
    Hu C, Chen M, Jiang R, Guo Y, Wu M, Zhang X (2018) Exosome-related tumor microenvironment. J Cancer 9(17):3084–3092.  https://doi.org/10.7150/jca.26422 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Lang HL, Hu GW, Zhang B, Kuang W, Chen Y, Wu L, Xu GH (2017) Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2. Oncol Rep 38(2):785–798.  https://doi.org/10.3892/or.2017.5742 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Lang HL, Hu GW, Chen Y, Liu Y, Tu W, Lu YM, Wu L, Xu GH (2017) Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur Rev Med Pharmacol Sci 21(5):959–972PubMedGoogle Scholar
  100. 100.
    Sukowati CH, Anfuso B, Torre G, Francalanci P, Croce LS, Tiribelli C (2013) The expression of CD90/Thy-1 in hepatocellular carcinoma: an in vivo and in vitro study. PLoS One 8(10):e76830.  https://doi.org/10.1371/journal.pone.0076830 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, Manno M, Raccosta S, Mancone C, Tripodi M, De Leo G, Alessandro R (2015) CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer 14(1):155.  https://doi.org/10.1186/s12943-015-0426-x CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Sun Z, Yang S, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Xu J, Xia K, Chang Y, Liu J, Yuan W (2018) Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer 17(1):82.  https://doi.org/10.1186/s12943-018-0831-z CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Xu CG, Yang MF, Ren YQ, Wu CH, Wang LQ (2016) Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci 20(20):4362–4368PubMedGoogle Scholar
  104. 104.
    Dong H, Wang W, Chen R, Zhang Y, Zou K, Ye M, He X, Zhang F, Han J (2018) Exosome-mediated transfer of lncRNASNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol 53(3):1013–1026.  https://doi.org/10.3892/ijo.2018.4467 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Zhang W, Cai X, Yu J, Lu X, Qian Q, Qian W (2018) Exosome-mediated transfer of lncRNA RP11838N2.4 promotes erlotinib resistance in non-small cell lung cancer. Int J Oncol 53(2):527–538.  https://doi.org/10.3892/ijo.2018.4412 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22(22):7842–7852CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Kang M, Ren M, Li Y, Fu Y, Deng M, Li C (2018) Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. J Exp Clin Cancer Res 37(1):171.  https://doi.org/10.1186/s13046-018-0845-9 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, Chen W, Liu F, Sun W, Li XF, Wang X, Wang Y, Xu ZY, Gao L, Yang Q, Xu B, Li YM, Fang ZY, Xu ZP, Bao Y, Wu DS, Miao X, Sun HY, Sun YH, Wang HY, Wang LH (2016) Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29(5):653–668.  https://doi.org/10.1016/j.ccell.2016.03.004 CrossRefPubMedGoogle Scholar
  109. 109.
    Takahashi K, Yan IK, Wood J, Haga H, Patel T (2014) Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res 12(10):1377–1387.  https://doi.org/10.1158/1541-7786.MCR-13-0636 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Takahashi K, Yan IK, Kogure T, Haga H, Patel T (2014) Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio 4(1):458–467.  https://doi.org/10.1016/j.fob.2014.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703.  https://doi.org/10.1056/NEJMoa1304369 CrossRefGoogle Scholar
  112. 112.
    Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 31(7):860–867.  https://doi.org/10.1200/JCO.2011.41.0902 CrossRefPubMedGoogle Scholar
  113. 113.
    Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Mazeedi M, Almazyadi HAM, Kallmeyer K, Dandara C, Pepper MS, Parker MI, Dzobo K (2017) The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int J Mol Sci 18(7):1586.  https://doi.org/10.3390/ijms18071586 CrossRefPubMedCentralGoogle Scholar
  114. 114.
    Lee YR, Kim G, Tak WY, Jang SY, Kweon YO, Park JG, Lee HW, Han YS, Chun JM, Park SY, Hur K (2018) Circulating exosomal non-coding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int J Cancer 68:S669–S670.  https://doi.org/10.1002/ijc.31931 CrossRefGoogle Scholar
  115. 115.
    Wang YH, Ji J, Wang BC, Chen H, Yang ZH, Wang K, Luo CL, Zhang WW, Wang FB, Zhang XL (2018) Tumor-derived exosomal long noncoding RNAs as promising diagnostic biomarkers for prostate cancer. Cell Physiol Biochem 46(2):532–545.  https://doi.org/10.1159/000488620 CrossRefPubMedGoogle Scholar
  116. 116.
    Isin M, Uysaler E, Ozgur E, Koseoglu H, Sanli O, Yucel OB, Gezer U, Dalay N (2015) Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet 6:168.  https://doi.org/10.3389/fgene.2015.00168 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Zhan Y, Du L, Wang L, Jiang X, Zhang S, Li J, Yan K, Duan W, Zhao Y, Wang Y, Wang C (2018) Expression signatures of exosomal long non-coding RNAs in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Mol Cancer 17(1):142.  https://doi.org/10.1186/s12943-018-0893-y CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Sun L, Su Y, Liu X, Xu M, Chen X, Zhu Y, Guo Z, Bai T, Dong L, Wei C, Cai X, He B, Pan Y, Sun H, Wang S (2018) Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma. J Cancer 9(15):2631–2639.  https://doi.org/10.7150/jca.24978 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Lin LY, Yang L, Zeng Q, Wang L, Chen ML, Zhao ZH, Ye GD, Luo QC, Lv PY, Guo QW, Li BA, Cai JC, Cai WY (2018) Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol Cancer 17(1):84.  https://doi.org/10.1186/s12943-018-0834-9 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Xu H, Chen Y, Dong X, Wang X (2018) Serum exosomal long noncoding RNAs ENSG00000258332.1 and LINC00635 for the diagnosis and prognosis of hepatocellular carcinoma. Cancer Epidemiol Biomark Prev 27(6):710–716.  https://doi.org/10.1158/1055-9965.epi-17-0770 CrossRefGoogle Scholar
  121. 121.
    Liu T, Zhang X, Gao S, Jing F, Yang Y, Du L, Zheng G, Li P, Li C, Wang C (2016) Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget 7(51):85551–85563.  https://doi.org/10.18632/oncotarget.13465 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Wang J, Zhou Y, Lu J, Sun Y, Xiao H, Liu M, Tian L (2014) Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol 31(9):148.  https://doi.org/10.1007/s12032-014-0148-8 CrossRefPubMedGoogle Scholar
  123. 123.
    Liu L, Meng T, Yang XH, Sayim P, Lei C, Jin B, Ge L, Wang HJ (2018) Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Cancer Biomark 22(2):283–299.  https://doi.org/10.3233/CBM-171011 CrossRefPubMedGoogle Scholar
  124. 124.
    Marleau AM, Chen CS, Joyce JA, Tullis RH (2012) Exosome removal as a therapeutic adjuvant in cancer. J Transl Med 10(1):134.  https://doi.org/10.1186/1479-5876-10-134 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Tullis RH, Duffin RP, Handley HH, Sodhi P, Menon J, Joyce JA, Kher V (2009) Reduction of hepatitis C virus using lectin affinity plasmapheresis in dialysis patients. Blood Purif 27(1):64–69.  https://doi.org/10.1159/000167011 CrossRefPubMedGoogle Scholar
  126. 126.
    Shi T, Gao G, Cao Y (2016) Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Mark 2016:9085195.  https://doi.org/10.1155/2016/9085195 CrossRefGoogle Scholar
  127. 127.
    Toiyama Y, Okugawa Y, Goel A (2014) DNA methylation and microRNA biomarkers for noninvasive detection of gastric and colorectal cancer. Biochem Biophys Res Commun 455(1–2):43–57.  https://doi.org/10.1016/j.bbrc.2014.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a new paradigm. Cancer Res 77(15):3965–3981.  https://doi.org/10.1158/0008-5472.CAN-16-2634 CrossRefPubMedGoogle Scholar
  129. 129.
    Alzahrani FA, El-Magd MA, Abdelfattah-Hassan A, Saleh AA, Saadeldin IM, El-Shetry ES, Badawy AA, Alkarim S (2018) Potential effect of exosomes derived from cancer stem cells and MSCs on progression of DEN-induced HCC in rats. Stem Cells Int 2018:8058979.  https://doi.org/10.1155/2018/8058979 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948CrossRefPubMedGoogle Scholar
  131. 131.
    Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97(2):329–339CrossRefGoogle Scholar
  132. 132.
    Hewson C, Morris KV (2016) Form and function of exosome-associated long non-coding RNAs in cancer. Curr Top Microbiol Immunol 394:41–56.  https://doi.org/10.1007/82_2015_486 CrossRefPubMedGoogle Scholar
  133. 133.
    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779.  https://doi.org/10.1038/mt.2011.164 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Andersen AA, Panning B (2003) Epigenetic gene regulation by noncoding RNAs. Curr Opin Cell Biol 15(3):281–289CrossRefPubMedGoogle Scholar
  135. 135.
    Bayoumi AS, Sayed A, Broskova Z, Teoh JP, Wilson J, Su H, Tang YL, Kim IM (2016) Crosstalk between long noncoding RNAs and microRNAs in health and disease. Int J Mol Sci 17(3):356.  https://doi.org/10.3390/ijms17030356 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21.  https://doi.org/10.1038/nrg3606 CrossRefPubMedGoogle Scholar
  137. 137.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:22.  https://doi.org/10.1002/0471143030.cb0322s30 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Translational MedicineMedical College of Qingdao UniversityQingdaoChina
  2. 2.Animal Biosafety Level III Laboratory at the Center for Animal ExperimentWuhan University School of MedicineWuhanChina

Personalised recommendations