The HMG box transcription factor HBP1: a cell cycle inhibitor at the crossroads of cancer signaling pathways

  • Emeline Bollaert
  • Audrey de Rocca Serra
  • Jean-Baptiste DemoulinEmail author


HMG box protein 1 (HBP1) is a transcription factor and a potent cell cycle inhibitor in normal and cancer cells. HBP1 activates or represses the expression of different cell cycle genes (such as CDKN2A, CDKN1A, and CCND1) through direct DNA binding, cofactor recruitment, chromatin remodeling, or neutralization of other transcription factors. Among these are LEF1, TCF4, and MYC in the WNT/beta-catenin pathway. HBP1 also contributes to oncogenic RAS-induced senescence and terminal cell differentiation. Collectively, these activities suggest a tumor suppressor function. However, HBP1 is not listed among frequently mutated cancer driver genes. Nevertheless, HBP1 expression is lower in several tumor types relative to matched normal tissues. Several micro-RNAs, such as miR-155, miR-17-92, and miR-29a, dampen HBP1 expression in cancer cells of various origins. The phosphatidylinositol-3 kinase (PI3K)/AKT pathway also inhibits HBP1 transcription by preventing FOXO binding to the HBP1 promoter. In addition, AKT directly phosphorylates HBP1, thereby inhibiting its transcriptional activity. Taken together, these findings place HBP1 at the center of a network of micro-RNAs and oncoproteins that control cell proliferation. In this review, we discuss our current understanding of HBP1 function in human physiology and diseases.


Retinoblastoma protein RB Ataxin HDAC Ubiquitin ligase DNA methylation Cell growth arrest 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Lesage F, Hugnot JP, Amri EZ, Grimaldi P, Barhanin J, Lazdunski M (1994) Expression cloning in K+ transport defective yeast and distribution of HBP1, a new putative HMG transcriptional regulator. Nucleic Acids Res 22:3685–3688CrossRefGoogle Scholar
  2. 2.
    Tevosian SG, Shih HH, Mendelson KG, Sheppard KA, Paulson KE, Yee AS (1997) HBP1: a HMG box transcriptional repressor that is targeted by the retinoblastoma family. Genes Dev 11:383–396CrossRefGoogle Scholar
  3. 3.
    Lavender P, Vandel L, Bannister AJ, Kouzarides T (1997) The HMG-box transcription factor HBP1 is targeted by the pocket proteins and E1A. Oncogene 14:2721–2728CrossRefGoogle Scholar
  4. 4.
    Song X, Gao X, Lu J, Liang H, Su P, Li Q, Pang Y (2018) High mobility group box transcription factor 1 (HBP1) from Lampetra japonica affects cell cycle regulation. Dev Growth Differ 60:146–157CrossRefGoogle Scholar
  5. 5.
    Giese K, Amsterdam A, Grosschedl R (1991) DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1. Genes Dev 5:2567–2578CrossRefGoogle Scholar
  6. 6.
    Zhuma T, Tyrrell R, Sekkali B, Skavdis G, Saveliev A, Tolaini M, Roderick K, Norton T, Smerdon S, Sedgwick S, Festenstein R, Kioussis D (1999) Human HMG box transcription factor HBP1: a role in hCD2 LCR function. EMBO J 18:6396–6406CrossRefGoogle Scholar
  7. 7.
    de Chiara C, Giannini C, Adinolfi S, de Boer J, Guida S, Ramos A, Jodice C, Kioussis D, Pastore A (2003) The AXH module: an independently folded domain common to ataxin-1 and HBP1. FEBS Lett 551:107–112CrossRefGoogle Scholar
  8. 8.
    de Chiara C, Menon RP, Adinolfi S, de Boer J, Ktistaki E, Kelly G, Calder L, Kioussis D, Pastore A (2005) The AXH domain adopts alternative folds the solution structure of HBP1 AXH. Structure 13:743–753CrossRefGoogle Scholar
  9. 9.
    Wang W, Pan K, Chen Y, Huang C, Zhang X (2012) The acetylation of transcription factor HBP1 by p300/CBP enhances p16INK4A expression. Nucleic Acids Res 40:981–995CrossRefGoogle Scholar
  10. 10.
    Swanson KA, Knoepfler PS, Huang K, Kang RS, Cowley SM, Laherty CD, Eisenman RN, Radhakrishnan I (2004) HBP1 and Mad1 repressors bind the Sin3 corepressor PAH2 domain with opposite helical orientations. Nat Struct Mol Biol 11:738–746CrossRefGoogle Scholar
  11. 11.
    Bollaert E, Johanns M, Herinckx G, de Rocca Serra A, Vandewalle VA, Havelange V, Rider MH, Vertommen D, Demoulin JB (2018) HBP1 phosphorylation by AKT regulates its transcriptional activity and glioblastoma cell proliferation. Cell Signal 44:158–170CrossRefGoogle Scholar
  12. 12.
    Zhang X, Kim J, Ruthazer R, McDevitt MA, Wazer DE, Paulson KE, Yee AS (2006) The HBP1 transcriptional repressor participates in RAS-induced premature senescence. Mol Cell Biol 26:8252–8266CrossRefGoogle Scholar
  13. 13.
    Shih HH, Tevosian SG, Yee AS (1998) Regulation of differentiation by HBP1, a target of the retinoblastoma protein. Mol Cell Biol 18:4732–4743CrossRefGoogle Scholar
  14. 14.
    Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y, Guo A, Chen YN, Rush J, Hsu PW, Yen HC, Elledge SJ (2011) Global identification of modular cullin-RING ligase substrates. Cell 147:459–474CrossRefGoogle Scholar
  15. 15.
    Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteom 10(M111):013284Google Scholar
  16. 16.
    Lampert F, Stafa D, Goga A, Soste MV, Gilberto S, Olieric N, Picotti P, Stoffel M, Peter M (2018) The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation. Elife 7:e35528CrossRefGoogle Scholar
  17. 17.
    Xiu M, Kim J, Sampson E, Huang CY, Davis RJ, Paulson KE, Yee AS (2003) The transcriptional repressor HBP1 is a target of the p38 mitogen-activated protein kinase pathway in cell cycle regulation. Mol Cell Biol 23:8890–8901CrossRefGoogle Scholar
  18. 18.
    Wang S, Cao Z, Xue J, Li H, Jiang W, Cheng Y, Li G, Zhang X (2017) A positive feedback loop between Pim-1 kinase and HBP1 transcription factor contributes to hydrogen peroxide-induced premature senescence and apoptosis. J Biol Chem 292:8207–8222CrossRefGoogle Scholar
  19. 19.
    Amaravadi R, Thompson CB (2005) The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 115:2618–2624CrossRefGoogle Scholar
  20. 20.
    Pan K, Chen Y, Roth M, Wang W, Wang S, Yee AS, Zhang X (2013) HBP1-mediated transcriptional regulation of DNA methyltransferase 1 and its impact on cell senescence. Mol Cell Biol 33:887–903CrossRefGoogle Scholar
  21. 21.
    Chen Y, Pan K, Wang P, Cao Z, Wang W, Wang S, Hu N, Xue J, Li H, Jiang W, Li G, Zhang X (2016) HBP1-mediated regulation of p21 protein through the Mdm2/p53 and TCF4/EZH2 pathways and its impact on cell senescence and tumorigenesis. J Biol Chem 291:12688–12705CrossRefGoogle Scholar
  22. 22.
    Lemercier C, Duncliffe K, Boibessot I, Zhang H, Verdel A, Angelov D, Khochbin S (2000) Involvement of retinoblastoma protein and HBP1 in histone H1(0) gene expression. Mol Cell Biol 20:6627–6637CrossRefGoogle Scholar
  23. 23.
    Escamilla-Powers JR, Daniel CJ, Farrell A, Taylor K, Zhang X, Byers S, Sears R (2010) The tumor suppressor protein HBP1 is a novel c-myc-binding protein that negatively regulates c-myc transcriptional activity. J Biol Chem 285:4847–4858CrossRefGoogle Scholar
  24. 24.
    Berasi SP, Xiu M, Yee AS, Paulson KE (2004) HBP1 repression of the p47phox gene: cell cycle regulation via the NADPH oxidase. Mol Cell Biol 24:3011–3024CrossRefGoogle Scholar
  25. 25.
    Li H, Wang W, Liu X, Paulson KE, Yee AS, Zhang X (2010) Transcriptional factor HBP1 targets P16(INK4A), upregulating its expression and consequently is involved in Ras-induced premature senescence. Oncogene 29:5083–5094CrossRefGoogle Scholar
  26. 26.
    Sampson EM, Haque ZK, Ku MC, Tevosian SG, Albanese C, Pestell RG, Paulson KE, Yee AS (2001) Negative regulation of the Wnt-beta-catenin pathway by the transcriptional repressor HBP1. EMBO J 20:4500–4511CrossRefGoogle Scholar
  27. 27.
    Elfert S, Weise A, Bruser K, Biniossek ML, Jagle S, Senghaas N, Hecht A (2013) Acetylation of human TCF4 (TCF7L2) proteins attenuates inhibition by the HBP1 repressor and induces a conformational change in the TCF4:DNA complex. PLoS One 8:e61867CrossRefGoogle Scholar
  28. 28.
    Claeys S, Denecker G, Durinck K, Decaesteker B, Mus LM, Loontiens S, Vanhauwaert S, Althoff K, Wigerup C, Bexell D, Dolman E, Henrich KO, Wehrmann L, Westerhout EM, Demoulin JB, Kumps C, Van Maerken T, Laureys G, Van Neste C, De Wilde B, De Wever O, Westermann F, Versteeg R, Molenaar JJ, Pahlman S, Schulte JH, De Preter K, Speleman F (2018) ALK positively regulates MYCN activity through repression of HBP1 expression. Oncogene. Google Scholar
  29. 29.
    Zhang Y, Gao Y, Zhao L, Han L, Lu Y, Hou P, Shi X, Liu X, Tian B, Wang X, Huang B, Lu J (2013) Mitogen-activated protein kinase p38 and retinoblastoma protein signalling is required for DNA damage-mediated formation of senescence-associated heterochromatic foci in tumour cells. FEBS J 280:4625–4639CrossRefGoogle Scholar
  30. 30.
    Lin KM, Zhao WG, Bhatnagar J, Zhao WD, Lu JP, Simko S, Schueneman A, Austin GE (2001) Cloning and expression of human HBP1, a high mobility group protein that enhances myeloperoxidase (MPO) promoter activity. Leukemia 15:601–612CrossRefGoogle Scholar
  31. 31.
    Yao CJ, Works K, Romagnoli PA, Austin GE (2005) Effects of overexpression of HBP1 upon growth and differentiation of leukemic myeloid cells. Leukemia 19:1958–1968CrossRefGoogle Scholar
  32. 32.
    Chan CY, Yu P, Chang FT, Chen ZH, Lee MF, Huang CY (2018) Transcription factor HMG box-containing protein 1 (HBP1) modulates mitotic clonal expansion (MCE) during adipocyte differentiation. J Cell Physiol 233:4205–4215CrossRefGoogle Scholar
  33. 33.
    Borrelli S, Candi E, Hu B, Dolfini D, Ravo M, Grober OM, Weisz A, Dotto GP, Melino G, Vigano MA, Mantovani R (2010) The p63 target HBP1 is required for skin differentiation and stratification. Cell Death Differ 17:1896–1907CrossRefGoogle Scholar
  34. 34.
    Paulson KE, Rieger-Christ K, McDevitt MA, Kuperwasser C, Kim J, Unanue VE, Zhang X, Hu M, Ruthazer R, Berasi SP, Huang CY, Giri D, Kaufman S, Dugan JM, Blum J, Netto G, Wazer DE, Summerhayes IC, Yee AS (2007) Alterations of the HBP1 transcriptional repressor are associated with invasive breast cancer. Cancer Res 67:6136–6145CrossRefGoogle Scholar
  35. 35.
    Liang H, Fairman J, Claxton DF, Nowell PC, Green ED, Nagarajan L (1998) Molecular anatomy of chromosome 7q deletions in myeloid neoplasms: evidence for multiple critical loci. Proc Natl Acad Sci USA 95:3781–3785CrossRefGoogle Scholar
  36. 36.
    Koike M, Tasaka T, Spira S, Tsuruoka N, Koeffler HP (1999) Allelotyping of acute myelogenous leukemia: loss of heterozygosity at 7q31.1 (D7S486) and q33-34 (D7S498, D7S505). Leuk Res 23:307–310CrossRefGoogle Scholar
  37. 37.
    Driouch K, Briffod M, Bieche I, Champeme MH, Lidereau R (1998) Location of several putative genes possibly involved in human breast cancer progression. Cancer Res 58:2081–2086Google Scholar
  38. 38.
    Zenklusen JC, Thompson JC, Troncoso P, Kagan J, Conti CJ (1994) Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7q31.1. Cancer Res 54:6370–6373Google Scholar
  39. 39.
    Zenklusen JC, Weitzel JN, Ball HG, Conti CJ (1995) Allelic loss at 7q31.1 in human primary ovarian carcinomas suggests the existence of a tumor suppressor gene. Oncogene 11:359–363Google Scholar
  40. 40.
    Zenklusen JC, Thompson JC, Klein-Szanto AJ, Conti CJ (1995) Frequent loss of heterozygosity in human primary squamous cell and colon carcinomas at 7q31.1: evidence for a broad range tumor suppressor gene. Cancer Res 55:1347–1350Google Scholar
  41. 41.
    Chen YC, Zhang XW, Niu XH, Xin DQ, Zhao WP, Na YQ, Mao ZB (2010) Macrophage migration inhibitory factor is a direct target of HBP1-mediated transcriptional repression that is overexpressed in prostate cancer. Oncogene 29:3067–3078CrossRefGoogle Scholar
  42. 42.
    Tseng RC, Huang WR, Lin SF, Wu PC, Hsu HS, Wang YC (2014) HBP1 promoter methylation augments the oncogenic beta-catenin to correlate with prognosis in NSCLC. J Cell Mol Med 18:1752–1761CrossRefGoogle Scholar
  43. 43.
    Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, Liu M, Zou Y, Weissman IL, Gu H (2010) microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 207:475–489CrossRefGoogle Scholar
  44. 44.
    Li H, Bian C, Liao L, Li J, Zhao RC (2011) miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat 126:565–575CrossRefGoogle Scholar
  45. 45.
    Coomans de Brachene A, Bollaert E, Eijkelenboom A, de Rocca Serra A, van der Vos KE, Burgering BM, Coffer PJ, Essaghir A, Demoulin JB (2014) The expression of the tumour suppressor HBP1 is down-regulated by growth factors via the PI3K/PKB/FOXO pathway. Biochem J 460:25–34CrossRefGoogle Scholar
  46. 46.
    Chen Y, Wang Y, Yu Y, Xu L, Zhang Y, Yu S, Li G, Zhang Z (2016) Transcription factor HBP1 enhances radiosensitivity by inducing apoptosis in prostate cancer cell lines. Anal Cell Pathol (Amst) 2016:7015659Google Scholar
  47. 47.
    Coomans de Brachene A, Demoulin JB (2016) FOXO transcription factors in cancer development and therapy. Cell Mol Life Sci 73:1159–1172CrossRefGoogle Scholar
  48. 48.
    Chan CY, Huang SY, Sheu JJ, Roth MM, Chou IT, Lien CH, Lee MF, Huang CY (2017) Transcription factor HBP1 is a direct anti-cancer target of transcription factor FOXO1 in invasive oral cancer. Oncotarget 8:14537–14548Google Scholar
  49. 49.
    Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, Colaprico A, Wendl MC, Kim J, Reardon B, Ng PK, Jeong KJ, Cao S, Wang Z, Gao J, Gao Q, Wang F, Liu EM, Mularoni L, Rubio-Perez C, Nagarajan N, Cortes-Ciriano I, Zhou DC, Liang WW, Hess JM, Yellapantula VD, Tamborero D, Gonzalez-Perez A, Suphavilai C, Ko JY, Khurana E, Park PJ, Van Allen EM, Liang H, Group MCW, N Cancer Genome Atlas Research, Lawrence MS, Godzik A, Lopez-Bigas N, Stuart J, Wheeler D, Getz G, Chen K, Lazar AJ, Mills GB, Karchin R, Ding L (2018) Comprehensive characterization of cancer driver genes and mutations. Cell 173:371–385 e18CrossRefGoogle Scholar
  50. 50.
    He S, Yang S, Niu M, Zhong Y, Dan G, Zhang Y, Ma H, Xiong W, Zhou M, Zhou Y, Xiang B, Li G, Shuai C, Peng S (2018) HMG-box transcription factor 1: a positive regulator of the G1/S transition through the Cyclin-CDK-CDKI molecular network in nasopharyngeal carcinoma. Cell Death Dis 9:100CrossRefGoogle Scholar
  51. 51.
    Sanghvi VR, Mavrakis KJ, Van der Meulen J, Boice M, Wolfe AL, Carty M, Mohan P, Rondou P, Socci ND, Benoit Y, Taghon T, Van Vlierberghe P, Leslie CS, Speleman F, Wendel HG (2014) Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia. Sci Signal 7:ra111CrossRefGoogle Scholar
  52. 52.
    Georgakilas AG, Martin OA, Bonner WM (2017) p21: a two-faced genome guardian. Trends Mol Med 23:310–319CrossRefGoogle Scholar
  53. 53.
    Spiller CM, Wilhelm D, Jans DA, Bowles J, Koopman P (2017) Mice lacking Hbp1 function are viable and fertile. PLoS One 12:e0170576CrossRefGoogle Scholar
  54. 54.
    Watanabe N, Kageyama R, Ohtsuka T (2015) Hbp1 regulates the timing of neuronal differentiation during cortical development by controlling cell cycle progression. Development 142:2278–2290CrossRefGoogle Scholar
  55. 55.
    Shih HH, Xiu M, Berasi SP, Sampson EM, Leiter A, Paulson KE, Yee AS (2001) HMG box transcriptional repressor HBP1 maintains a proliferation barrier in differentiated liver tissue. Mol Cell Biol 21:5723–5732CrossRefGoogle Scholar
  56. 56.
    Sekkali B, Szabat E, Ktistaki E, Tolaini M, Roderick K, Harker N, Patel A, Williams K, Norton T, Kioussis D (2005) Human high mobility group box transcription factor 1 affects thymocyte development and transgene variegation. J Immunol 175:5203–5212CrossRefGoogle Scholar
  57. 57.
    Dong Z, Huang M, Liu Z, Xie P, Dong Y, Wu X, Qu Z, Shen B, Huang X, Zhang T, Li J, Liu J, Yanase T, Zhou C, Xu Y (2016) Focused screening of mitochondrial metabolism reveals a crucial role for a tumor suppressor Hbp1 in ovarian reserve. Cell Death Differ 23:1602–1614CrossRefGoogle Scholar
  58. 58.
    Raine EV, Wreglesworth N, Dodd AW, Reynard LN, Loughlin J (2012) Gene expression analysis reveals HBP1 as a key target for the osteoarthritis susceptibility locus that maps to chromosome 7q22. Ann Rheum Dis 71:2020–2027CrossRefGoogle Scholar
  59. 59.
    Martinez-Jacobo L, Cordova-Fletes C, Ortiz-Lopez R, Rivas F, Saucedo-Carrasco C, Rojas-Martinez A (2013) Delineation of a de novo 7q21.3q31.1 deletion by CGH-SNP arrays in a girl with multiple congenital anomalies including severe glaucoma. Mol Syndromol 4:285–291Google Scholar
  60. 60.
    van der Laan SW, Siemelink MA, Haitjema S, Foroughi Asl H, Perisic L, Mokry M, van Setten J, Malik R, Dichgans M, Worrall BB, MCotISG Consortium, Samani NJ, Schunkert H, Erdmann J, Hedin U, Paulsson-Berne G, Bjorkegrenn JLM, de Borst GJ, Asselbergs FW, den Ruijter FW, de Bakker PIW, Pasterkamp G (2018) Genetic susceptibility loci for cardiovascular disease and their impact on atherosclerotic plaques. Circ Genom Precis Med 11:e002115Google Scholar
  61. 61.
    Young RS, Weaver DD, Kukolich MK, Heerema NA, Palmer CG, Kawira EL, Bender HA (1984) Terminal and interstitial deletions of the long arm of chromosome 7: a review with five new cases. Am J Med Genet 17:437–450CrossRefGoogle Scholar
  62. 62.
    Tzschach A, Menzel C, Erdogan F, Schubert M, Hoeltzenbein M, Barbi G, Petzenhauser C, Ropers HH, Ullmann R, Kalscheuer V (2007) Characterization of a 16 Mb interstitial chromosome 7q21 deletion by tiling path array CGH. Am J Med Genet A 143:333–337CrossRefGoogle Scholar
  63. 63.
    Fagan K, Gill A, Henry R, Wilkinson I, Carey B (1989) A summary of 7q interstitial deletions and exclusion mapping of the gene for beta-glucuronidase. J Med Genet 26:619–625CrossRefGoogle Scholar
  64. 64.
    Al-Hassnan ZN, Al-Bakheet A, Abu-Dheim N, Al-Younes B, Colak D, Kaya N (2011) A novel interstitial microdeletion of 7q22.1-7q22.3 detected by array comparative genomic hybridization. Am J Med Genet A 155A:3128–3131CrossRefGoogle Scholar
  65. 65.
    Li Y, Choi PS, Casey SC, Dill DL, Felsher DW (2014) MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell 26:262–272CrossRefGoogle Scholar
  66. 66.
    Kayali S, Giraud G, Morle F, Guyot B (2012) Spi-1, Fli-1 and Fli-3 (miR-17-92) oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia. PLoS One 7:e46799CrossRefGoogle Scholar
  67. 67.
    Wu H, Ng R, Chen X, Steer CJ, Song G (2016) MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut 65:1850–1860CrossRefGoogle Scholar
  68. 68.
    Yan Z, Wang J, Wang C, Jiao Y, Qi W, Che S (2014) miR-96/HBP1/Wnt/beta-catenin regulatory circuitry promotes glioma growth. FEBS Lett 588:3038–3046CrossRefGoogle Scholar
  69. 69.
    Wan YC, Li T, Han YD, Zhang HY, Lin H, Zhang B (2016) MicroRNA-155 enhances the activation of Wnt/beta-catenin signaling in colorectal carcinoma by suppressing HMG-box transcription factor 1. Mol Med Rep 13:2221–2228CrossRefGoogle Scholar
  70. 70.
    Sun X, Geng X, Zhang J, Zhao H, Liu Y (2015) miR-155 promotes the growth of osteosarcoma in a HBP1-dependent mechanism. Mol Cell Biochem 403:139–147CrossRefGoogle Scholar
  71. 71.
    Yan Z, Che S, Wang J, Jiao Y, Wang C, Meng Q (2015) miR-155 contributes to the progression of glioma by enhancing Wnt/beta-catenin pathway. Tumour Biol 36:5323–5331CrossRefGoogle Scholar
  72. 72.
    Yang Z, Wu L, Zhu X, Xu J, Jin R, Li G, Wu F (2013) MiR-29a modulates the angiogenic properties of human endothelial cells. Biochem Biophys Res Commun 434:143–149CrossRefGoogle Scholar
  73. 73.
    Tian FJ, An LN, Wang GK, Zhu JQ, Li Q, Zhang YY, Zeng A, Zou J, Zhu RF, Han XS, Shen N, Yang HT, Zhao XX, Huang S, Qin YW, Jing Q (2014) Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. Cardiovasc Res 103:100–110CrossRefGoogle Scholar
  74. 74.
    Chen H, Li X, Liu S, Gu L, Zhou X (2017) MircroRNA-19a promotes vascular inflammation and foam cell formation by targeting HBP-1 in atherogenesis. Sci Rep 7:12089CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Catholique de Louvain, de Duve InstituteBrusselsBelgium

Personalised recommendations