Advertisement

Stem cells within the shoot apical meristem: identity, arrangement and communication

  • Naoyuki Uchida
  • Keiko U. Torii
Review

Abstract

Stem cells are specific cells that renew themselves and also provide daughter cells for organ formation. In plants, primary stem cell populations are nurtured within shoot and root apical meristems (SAM and RAM) for the production of aerial and underground parts, respectively. This review article summarizes recent progress on control of stem cells in the SAM from studies of the model plant Arabidopsis thaliana. To that end, a brief overview of the RAM is provided first to emphasize similarities and differences between the two apical meristems, which would help in better understanding of stem cells in the SAM. Subsequently, we will discuss in depth how stem cells are arranged in an organized manner in the SAM, how dynamically the stem cell identity is regulated, what factors participate in stem cell control, and how intercellular communication by mobile signals modulates stem cell behaviors within the SAM. Remaining questions and perspectives are also presented for future studies.

Keywords

Central zone Organizing center Peripheral zone Shoot apical meristem Stem cell Tissue layer 

Notes

Acknowledgements

This work was supported by MEXT/JSPS KAKENHI (Grant number JP17H03695, JP17KT0017 and JP18H04777 to N.U.; JP17H06476 to K.U.T.) and Gordon and Betty Moore Foundation (GBMF3035 to K.U.T). K.U.T. is an HHMI investigator.

References

  1. 1.
    Heidstra R, Sabatini S (2014) Plant and animal stem cells: similar yet different. Nat Rev Mol Cell Biol 15:301–312.  https://doi.org/10.1038/nrm3790 CrossRefGoogle Scholar
  2. 2.
    Gaillochet C, Lohmann JU (2015) The never-ending story: from pluripotency to plant developmental plasticity. Development 142:2237–2249.  https://doi.org/10.1242/dev.117614 CrossRefGoogle Scholar
  3. 3.
    Greb T, Lohmann JU (2016) Plant stem cells. Curr Biol 26:R816–R821.  https://doi.org/10.1016/j.cub.2016.07.070 CrossRefGoogle Scholar
  4. 4.
    Rahni R, Efroni I, Birnbaum KD (2016) A case for distributed control of local stem cell behavior in plants. Dev Cell 38:635–642.  https://doi.org/10.1016/j.devcel.2016.08.015 CrossRefGoogle Scholar
  5. 5.
    Van Norman JM (2016) Asymmetry and cell polarity in root development. Dev Biol 419:165–174.  https://doi.org/10.1016/j.ydbio.2016.07.009 CrossRefGoogle Scholar
  6. 6.
    Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84Google Scholar
  7. 7.
    van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–289.  https://doi.org/10.1038/36856 CrossRefGoogle Scholar
  8. 8.
    Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814.  https://doi.org/10.1038/nature05703 CrossRefGoogle Scholar
  9. 9.
    Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, Hennig L, Groot E, Laux T (2015) Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell 33:576–588.  https://doi.org/10.1016/j.devcel.2015.04.024 CrossRefGoogle Scholar
  10. 10.
    Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668.  https://doi.org/10.1105/tpc.109.066480 CrossRefGoogle Scholar
  11. 11.
    Stahl Y, Wink RH, Ingram GC, Simon R (2009) A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19:909–914.  https://doi.org/10.1016/j.cub.2009.03.060 CrossRefGoogle Scholar
  12. 12.
    Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y (2010) Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329:1065–1067.  https://doi.org/10.1126/science.1191132 CrossRefGoogle Scholar
  13. 13.
    Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Mecchia MA, Sabatini M, Cools T, De Veylder L, Benfey PN, Palatnik JF (2015) MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in arabidopsis roots. Plant Cell 27:3354–3366.  https://doi.org/10.1105/tpc.15.00452 CrossRefGoogle Scholar
  14. 14.
    Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057.  https://doi.org/10.1038/nature06206 CrossRefGoogle Scholar
  15. 15.
    Wendrich JR, Moller BK, Li S, Saiga S, Sozzani R, Benfey PN, De Rybel B, Weijers D (2017) Framework for gradual progression of cell ontogeny in the Arabidopsis root meristem. Proc Natl Acad Sci USA 114:E8922–E8929.  https://doi.org/10.1073/pnas.1707400114 CrossRefGoogle Scholar
  16. 16.
    Mahonen AP, Ten Tusscher K, Siligato R, Smetana O, Diaz-Trivino S, Salojarvi J, Wachsman G, Prasad K, Heidstra R, Scheres B (2014) PLETHORA gradient formation mechanism separates auxin responses. Nature 515:125–129.  https://doi.org/10.1038/nature13663 CrossRefGoogle Scholar
  17. 17.
    Pallakies H, Simon R (2014) The CLE40 and CRN/CLV2 signaling pathways antagonistically control root meristem growth in Arabidopsis. Mol Plant 7:1619–1636.  https://doi.org/10.1093/mp/ssu094 CrossRefGoogle Scholar
  18. 18.
    Shimotohno A, Heidstra R, Blilou I, Scheres B (2018) Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules. Genes Dev 32:1085–1100.  https://doi.org/10.1101/gad.314096.118 CrossRefGoogle Scholar
  19. 19.
    Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge.  https://doi.org/10.1017/cbo9780511626227 CrossRefGoogle Scholar
  20. 20.
    Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914CrossRefGoogle Scholar
  21. 21.
    Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225–4237.  https://doi.org/10.1242/dev.01261 CrossRefGoogle Scholar
  22. 22.
    Laufs P, Grandjean O, Jonak C, Kieu K, Traas J (1998) Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10:1375–1390CrossRefGoogle Scholar
  23. 23.
    Laux T, Mayer KF, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96Google Scholar
  24. 24.
    Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815CrossRefGoogle Scholar
  25. 25.
    Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619CrossRefGoogle Scholar
  26. 26.
    Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644CrossRefGoogle Scholar
  27. 27.
    Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313:845–848.  https://doi.org/10.1126/science.1128439 CrossRefGoogle Scholar
  28. 28.
    Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5:578–580.  https://doi.org/10.1038/nchembio.182 CrossRefGoogle Scholar
  29. 29.
    Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925–1934CrossRefGoogle Scholar
  30. 30.
    Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585CrossRefGoogle Scholar
  31. 31.
    Muller R, Bleckmann A, Simon R (2008) The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20:934–946.  https://doi.org/10.1105/tpc.107.057547 CrossRefGoogle Scholar
  32. 32.
    Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294.  https://doi.org/10.1126/science.1150083 CrossRefGoogle Scholar
  33. 33.
    Shinohara H, Moriyama Y, Ohyama K, Matsubayashi Y (2012) Biochemical mapping of a ligand-binding domain within Arabidopsis BAM1 reveals diversified ligand recognition mechanisms of plant LRR-RKs. Plant J 70:845–854.  https://doi.org/10.1111/j.1365-313X.2012.04934.x CrossRefGoogle Scholar
  34. 34.
    Shinohara H, Matsubayashi Y (2015) Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. Plant J 82:328–336.  https://doi.org/10.1111/tpj.12817 CrossRefGoogle Scholar
  35. 35.
    Deyoung BJ, Clark SE (2008) BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 180:895–904.  https://doi.org/10.1534/genetics.108.091108 CrossRefGoogle Scholar
  36. 36.
    Nimchuk ZL, Zhou Y, Tarr PT, Peterson BA, Meyerowitz EM (2015) Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development 142:1043–1049.  https://doi.org/10.1242/dev.119677 CrossRefGoogle Scholar
  37. 37.
    Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S (2010) RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137:3911–3920.  https://doi.org/10.1242/dev.048199 CrossRefGoogle Scholar
  38. 38.
    Hu C, Zhu Y, Cui Y, Cheng K, Liang W, Wei Z, Zhu M, Yin H, Zeng L, Xiao Y, Lv M, Yi J, Hou S, He K, Li J, Gou X (2018) A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nat Plants 4:205–211.  https://doi.org/10.1038/s41477-018-0123-z CrossRefGoogle Scholar
  39. 39.
    Clark SE, Running MP, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057–2067Google Scholar
  40. 40.
    Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684.  https://doi.org/10.1105/tpc.3.7.677 CrossRefGoogle Scholar
  41. 41.
    Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518CrossRefGoogle Scholar
  42. 42.
    Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602CrossRefGoogle Scholar
  43. 43.
    Yadav RK, Tavakkoli M, Reddy GV (2010) WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors. Development 137:3581–3589.  https://doi.org/10.1242/dev.054973 CrossRefGoogle Scholar
  44. 44.
    Gaillochet C, Stiehl T, Wenzl C, Ripoll JJ, Bailey-Steinitz LJ, Li L, Pfeiffer A, Miotk A, Hakenjos JP, Forner J, Yanofsky MF, Marciniak-Czochra A, Lohmann JU (2017) Control of plant cell fate transitions by transcriptional and hormonal signals. Elife 6:e30135.  https://doi.org/10.7554/eLife.30135 CrossRefGoogle Scholar
  45. 45.
    Schuster C, Gaillochet C, Medzihradszky A, Busch W, Daum G, Krebs M, Kehle A, Lohmann JU (2014) A regulatory framework for shoot stem cell control integrating metabolic, transcriptional, and phytohormone signals. Dev Cell 28:438–449.  https://doi.org/10.1016/j.devcel.2014.01.013 CrossRefGoogle Scholar
  46. 46.
    Reddy GV, Meyerowitz EM (2005) Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310:663–667.  https://doi.org/10.1126/science.1116261 CrossRefGoogle Scholar
  47. 47.
    Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2003) Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:4073–4083CrossRefGoogle Scholar
  48. 48.
    Adibi M, Yoshida S, Weijers D, Fleck C (2016) Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization. PLoS One 11:e0147830.  https://doi.org/10.1371/journal.pone.0147830 CrossRefGoogle Scholar
  49. 49.
    Sena G, Wang X, Liu HY, Hofhuis H, Birnbaum KD (2009) Organ regeneration does not require a functional stem cell niche in plants. Nature 457:1150–1153.  https://doi.org/10.1038/nature07597 CrossRefGoogle Scholar
  50. 50.
    Satina S, Blakeslee AF, Avery AG (1940) Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am J Bot 27:895–905.  https://doi.org/10.2307/2436558 CrossRefGoogle Scholar
  51. 51.
    Savaldi-Goldstein S, Chory J (2008) Growth coordination and the shoot epidermis. Curr Opin Plant Biol 11:42–48.  https://doi.org/10.1016/j.pbi.2007.10.009 CrossRefGoogle Scholar
  52. 52.
    Kutschera U (2008) The growing outer epidermal wall: design and physiological role of a composite structure. Ann Bot 101:615–621.  https://doi.org/10.1093/aob/mcn015 CrossRefGoogle Scholar
  53. 53.
    Galletti R, Verger S, Hamant O, Ingram GC (2016) Developing a ‘thick skin’: a paradoxical role for mechanical tension in maintaining epidermal integrity? Development 143:3249–3258.  https://doi.org/10.1242/dev.132837 CrossRefGoogle Scholar
  54. 54.
    Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol 139:1649–1665.  https://doi.org/10.1104/pp.105.070805 CrossRefGoogle Scholar
  55. 55.
    Lu P, Porat R, Nadeau JA, O’Neill SD (1996) Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell 8:2155–2168.  https://doi.org/10.1105/tpc.8.12.2155 CrossRefGoogle Scholar
  56. 56.
    Sessions A, Weigel D, Yanofsky MF (1999) The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J 20:259–263CrossRefGoogle Scholar
  57. 57.
    Yadav RK, Girke T, Pasala S, Xie M, Reddy GV (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA 106:4941–4946.  https://doi.org/10.1073/pnas.0900843106 CrossRefGoogle Scholar
  58. 58.
    Yadav RK, Tavakkoli M, Xie M, Girke T, Reddy GV (2014) A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche. Development 141:2735–2744.  https://doi.org/10.1242/dev.106104 CrossRefGoogle Scholar
  59. 59.
    Yadav RK, Perales M, Gruel J, Girke T, Jonsson H, Reddy GV (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25:2025–2030.  https://doi.org/10.1101/gad.17258511 CrossRefGoogle Scholar
  60. 60.
    Daum G, Medzihradszky A, Suzaki T, Lohmann JU (2014) A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA 111:14619–14624.  https://doi.org/10.1073/pnas.1406446111 CrossRefGoogle Scholar
  61. 61.
    Perales M, Rodriguez K, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV (2016) Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci USA 113:E6298–E6306.  https://doi.org/10.1073/pnas.1607669113 CrossRefGoogle Scholar
  62. 62.
    Zhou Y, Yan A, Han H, Li T, Geng Y, Liu X, Meyerowitz EM (2018) HAIRY MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical meristem layers. Science 361:502–506.  https://doi.org/10.1126/science.aar8638 CrossRefGoogle Scholar
  63. 63.
    Engstrom EM, Andersen CM, Gumulak-Smith J, Hu J, Orlova E, Sozzani R, Bowman JL (2011) Arabidopsis homologs of the petunia hairy meristem gene are required for maintenance of shoot and root indeterminacy. Plant Physiol 155:735–750.  https://doi.org/10.1104/pp.110.168757 CrossRefGoogle Scholar
  64. 64.
    Schulze S, Schafer BN, Parizotto EA, Voinnet O, Theres K (2010) LOST MERISTEMS genes regulate cell differentiation of central zone descendants in Arabidopsis shoot meristems. Plant J 64:668–678.  https://doi.org/10.1111/j.1365-313X.2010.04359.x CrossRefGoogle Scholar
  65. 65.
    Zhou Y, Liu X, Engstrom EM, Nimchuk ZL, Pruneda-Paz JL, Tarr PT, Yan A, Kay SA, Meyerowitz EM (2015) Control of plant stem cell function by conserved interacting transcriptional regulators. Nature 517:377–380.  https://doi.org/10.1038/nature13853 CrossRefGoogle Scholar
  66. 66.
    Krizek B (2009) AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol 150:1916–1929.  https://doi.org/10.1104/pp.109.141119 CrossRefGoogle Scholar
  67. 67.
    Meng L, Buchanan BB, Feldman LJ, Luan S (2012) CLE-like (CLEL) peptides control the pattern of root growth and lateral root development in Arabidopsis. Proc Natl Acad Sci USA 109:1760–1765.  https://doi.org/10.1073/pnas.1119864109 CrossRefGoogle Scholar
  68. 68.
    Whitford R, Fernandez A, Tejos R, Perez AC, Kleine-Vehn J, Vanneste S, Drozdzecki A, Leitner J, Abas L, Aerts M, Hoogewijs K, Baster P, De Groodt R, Lin YC, Storme V, Van de Peer Y, Beeckman T, Madder A, Devreese B, Luschnig C, Friml J, Hilson P (2012) GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses. Dev Cell 22:678–685.  https://doi.org/10.1016/j.devcel.2012.02.002 CrossRefGoogle Scholar
  69. 69.
    Fernandez A, Hilson P, Beeckman T (2013) GOLVEN peptides as important regulatory signalling molecules of plant development. J Exp Bot 64:5263–5268.  https://doi.org/10.1093/jxb/ert248 CrossRefGoogle Scholar
  70. 70.
    Shinohara H, Mori A, Yasue N, Sumida K, Matsubayashi Y (2016) Identification of three LRR-RKs involved in perception of root meristem growth factor in Arabidopsis. Proc Natl Acad Sci USA 113:3897–3902.  https://doi.org/10.1073/pnas.1522639113 CrossRefGoogle Scholar
  71. 71.
    Fernandez A, Drozdzecki A, Hoogewijs K, Nguyen A, Beeckman T, Madder A, Hilson P (2013) Transcriptional and functional classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-like signaling peptides reveals their role in lateral root and hair formation. Plant Physiol 161:954–970.  https://doi.org/10.1104/pp.112.206029 CrossRefGoogle Scholar
  72. 72.
    Kimura Y, Tasaka M, Torii KU, Uchida N (2018) ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development.  https://doi.org/10.1242/dev.156380 CrossRefGoogle Scholar
  73. 73.
    Huang W, Pitorre D, Poretska O, Marizzi C, Winter N, Poppenberger B, Sieberer T (2015) ALTERED MERISTEM PROGRAM1 suppresses ectopic stem cell niche formation in the shoot apical meristem in a largely cytokinin-independent manner. Plant Physiol 167:1471–1486.  https://doi.org/10.1104/pp.114.254623 CrossRefGoogle Scholar
  74. 74.
    Lee C, Clark SE (2015) A WUSCHEL-independent stem cell specification pathway is repressed by PHB, PHV and CNA in Arabidopsis. PLoS One 10:e0126006.  https://doi.org/10.1371/journal.pone.0126006 CrossRefGoogle Scholar
  75. 75.
    Mandel T, Moreau F, Kutsher Y, Fletcher JC, Carles CC, Eshed Williams L (2014) The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity. Development 141:830–841.  https://doi.org/10.1242/dev.104687 CrossRefGoogle Scholar
  76. 76.
    Mandel T, Candela H, Landau U, Asis L, Zelinger E, Carles CC, Williams LE (2016) Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development 143:1612–1622.  https://doi.org/10.1242/dev.129973 CrossRefGoogle Scholar
  77. 77.
    Yang S, Poretska O, Sieberer T (2018) ALTERED MERISTEM PROGRAM1 restricts shoot meristem proliferation and regeneration by limiting HD-ZIP III-mediated expression of RAP2.6L. Plant Physiol 177:1580–1594.  https://doi.org/10.1104/pp.18.00252 CrossRefGoogle Scholar
  78. 78.
    Tameshige T, Okamoto S, Lee JS, Aida M, Tasaka M, Torii KU, Uchida N (2016) A secreted peptide and its receptors shape the auxin response pattern and leaf margin morphogenesis. Curr Biol 26:2478–2485.  https://doi.org/10.1016/j.cub.2016.07.014 CrossRefGoogle Scholar
  79. 79.
    Etchells JP, Provost CM, Mishra L, Turner SR (2013) WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140:2224–2234.  https://doi.org/10.1242/dev.091314 CrossRefGoogle Scholar
  80. 80.
    Uchida N, Tasaka M (2013) Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases. J Exp Bot 64:5335–5343.  https://doi.org/10.1093/jxb/ert196 CrossRefGoogle Scholar
  81. 81.
    Ikematsu S, Tasaka M, Torii KU, Uchida N (2017) ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. New Phytol 213:1697–1709.  https://doi.org/10.1111/nph.14335 CrossRefGoogle Scholar
  82. 82.
    Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K (2012) Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24:519–535.  https://doi.org/10.1105/tpc.111.092858 CrossRefGoogle Scholar
  83. 83.
    Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ (2010) WOX4 promotes procambial development. Plant Physiol 152:1346–1356.  https://doi.org/10.1104/pp.109.149641 CrossRefGoogle Scholar
  84. 84.
    Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–2629.  https://doi.org/10.1105/tpc.110.076083 CrossRefGoogle Scholar
  85. 85.
    Bemis SM, Lee JS, Shpak ED, Torii KU (2013) Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes. J Exp Bot 64:5323–5333.  https://doi.org/10.1093/jxb/ert270 CrossRefGoogle Scholar
  86. 86.
    Chen MK, Wilson RL, Palme K, Ditengou FA, Shpak ED (2013) ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia. Plant Physiol 162:1978–1991.  https://doi.org/10.1104/pp.113.218198 CrossRefGoogle Scholar
  87. 87.
    Uchida N, Shimada M, Tasaka M (2013) ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem. Plant Cell Physiol 54:343–351.  https://doi.org/10.1093/pcp/pcs109 CrossRefGoogle Scholar
  88. 88.
    He Y, Zhou J, Shan L, Meng X (2018) Plant cell surface receptor-mediated signaling—a common theme amid diversity. J Cell Sci.  https://doi.org/10.1242/jcs.209353 CrossRefGoogle Scholar
  89. 89.
    Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8:735–746.  https://doi.org/10.1105/tpc.8.4.735 CrossRefGoogle Scholar
  90. 90.
    Truskina J, Vernoux T (2018) The growth of a stable stationary structure: coordinating cell behavior and patterning at the shoot apical meristem. Curr Opin Plant Biol 41:83–88.  https://doi.org/10.1016/j.pbi.2017.09.011 CrossRefGoogle Scholar
  91. 91.
    Janocha D, Lohmann JU (2018) From signals to stem cells and back again. Curr Opin Plant Biol 45:136–142.  https://doi.org/10.1016/j.pbi.2018.06.005 CrossRefGoogle Scholar
  92. 92.
    Kitagawa M, Jackson D (2017) Plasmodesmata-mediated cell-to-cell communication in the shoot apical meristem: how stem cells talk. Plants (Basel).  https://doi.org/10.3390/plants6010012 CrossRefGoogle Scholar
  93. 93.
    Rodriguez K, Perales M, Snipes S, Yadav RK, Diaz-Mendoza M, Reddy GV (2016) DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning. Proc Natl Acad Sci USA 113:E6307–E6315.  https://doi.org/10.1073/pnas.1607673113 CrossRefGoogle Scholar
  94. 94.
    Snipes SA, Rodriguez K, DeVries AE, Miyawaki KN, Perales M, Xie M, Reddy GV (2018) Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. PLoS Genet 14:e1007351.  https://doi.org/10.1371/journal.pgen.1007351 CrossRefGoogle Scholar
  95. 95.
    Gruel J, Landrein B, Tarr P, Schuster C, Refahi Y, Sampathkumar A, Hamant O, Meyerowitz EM, Jonsson H (2016) An epidermis-driven mechanism positions and scales stem cell niches in plants. Sci Adv 2:e1500989.  https://doi.org/10.1126/sciadv.1500989 CrossRefGoogle Scholar
  96. 96.
    Wang J, Tian C, Zhang C, Shi B, Cao X, Zhang TQ, Zhao Z, Wang JW, Jiao Y (2017) Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell 29:1373–1387.  https://doi.org/10.1105/tpc.16.00579 CrossRefGoogle Scholar
  97. 97.
    Meng WJ, Cheng ZJ, Sang YL, Zhang MM, Rong XF, Wang ZW, Tang YY, Zhang XS (2017) Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29:1357–1372.  https://doi.org/10.1105/tpc.16.00640 CrossRefGoogle Scholar
  98. 98.
    Zhang TQ, Lian H, Zhou CM, Xu L, Jiao Y, Wang JW (2017) A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29:1073–1087.  https://doi.org/10.1105/tpc.16.00863 CrossRefGoogle Scholar
  99. 99.
    Zubo YO, Blakley IC, Yamburenko MV, Worthen JM, Street IH, Franco-Zorrilla JM, Zhang W, Hill K, Raines T, Solano R, Kieber JJ, Loraine AE, Schaller GE (2017) Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc Natl Acad Sci USA 114:E5995–E6004.  https://doi.org/10.1073/pnas.1620749114 CrossRefGoogle Scholar
  100. 100.
    Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM (2012) Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci USA 109:4002–4007.  https://doi.org/10.1073/pnas.1200636109 CrossRefGoogle Scholar
  101. 101.
    Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA 106:16529–16534.  https://doi.org/10.1073/pnas.0908122106 CrossRefGoogle Scholar
  102. 102.
    Zurcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Muller B (2013) A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol 161:1066–1075.  https://doi.org/10.1104/pp.112.211763 CrossRefGoogle Scholar
  103. 103.
    Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175.  https://doi.org/10.1038/nature04270 CrossRefGoogle Scholar
  104. 104.
    de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carraro N, Godin C, Traas J (2006) Computer simulations reveal properties of the cell–cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci USA 103:1627–1632.  https://doi.org/10.1073/pnas.0510130103 CrossRefGoogle Scholar
  105. 105.
    Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106.  https://doi.org/10.1038/nature10791 CrossRefGoogle Scholar
  106. 106.
    Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU (2010) Hormonal control of the shoot stem-cell niche. Nature 465:1089–1092.  https://doi.org/10.1038/nature09126 CrossRefGoogle Scholar
  107. 107.
    Luo L, Zeng J, Wu H, Tian Z, Zhao Z (2018) A molecular framework for auxin-controlled homeostasis of shoot stem cells in Arabidopsis. Mol Plant 11:899–913.  https://doi.org/10.1016/j.molp.2018.04.006 CrossRefGoogle Scholar
  108. 108.
    Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799.  https://doi.org/10.1101/gad.1415106 CrossRefGoogle Scholar
  109. 109.
    Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439.  https://doi.org/10.1105/tpc.107.053009 CrossRefGoogle Scholar
  110. 110.
    Cheng ZJ, Wang L, Sun W, Zhang Y, Zhou C, Su YH, Li W, Sun TT, Zhao XY, Li XG, Cheng Y, Zhao Y, Xie Q, Zhang XS (2013) Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol 161:240–251.  https://doi.org/10.1104/pp.112.203166 CrossRefGoogle Scholar
  111. 111.
    Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550.  https://doi.org/10.1105/tpc.014928 CrossRefGoogle Scholar
  112. 112.
    Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 101:8821–8826.  https://doi.org/10.1073/pnas.0402887101 CrossRefGoogle Scholar
  113. 113.
    Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603.  https://doi.org/10.1073/pnas.0603522103 CrossRefGoogle Scholar
  114. 114.
    Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Sakakibara H (2012) Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J 69:355–365.  https://doi.org/10.1111/j.1365-313X.2011.04795.x CrossRefGoogle Scholar
  115. 115.
    Busch W, Miotk A, Ariel FD, Zhao Z, Forner J, Daum G, Suzaki T, Schuster C, Schultheiss SJ, Leibfried A, Haubeiss S, Ha N, Chan RL, Lohmann JU (2010) Transcriptional control of a plant stem cell niche. Dev Cell 18:849–861.  https://doi.org/10.1016/j.devcel.2010.03.012 CrossRefGoogle Scholar
  116. 116.
    Fouracre JP, Poethig RS (2016) The role of small RNAs in vegetative shoot development. Curr Opin Plant Biol 29:64–72.  https://doi.org/10.1016/j.pbi.2015.11.006 CrossRefGoogle Scholar
  117. 117.
    Hisanaga T, Miyashima S, Nakajima K (2014) Small RNAs as positional signal for pattern formation. Curr Opin Plant Biol 21:37–42.  https://doi.org/10.1016/j.pbi.2014.06.005 CrossRefGoogle Scholar
  118. 118.
    Liu Q, Yao X, Pi L, Wang H, Cui X, Huang H (2009) The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J 58:27–40.  https://doi.org/10.1111/j.1365-313X.2008.03757.x CrossRefGoogle Scholar
  119. 119.
    Miyashima S, Honda M, Hashimoto K, Tatematsu K, Hashimoto T, Sato-Nara K, Okada K, Nakajima K (2013) A comprehensive expression analysis of the Arabidopsis MICRORNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function. Plant Cell Physiol 54:375–384.  https://doi.org/10.1093/pcp/pcs188 CrossRefGoogle Scholar
  120. 120.
    Tatematsu K, Toyokura K, Miyashima S, Nakajima K, Okada K (2015) A molecular mechanism that confines the activity pattern of miR165 in Arabidopsis leaf primordia. Plant J 82:596–608.  https://doi.org/10.1111/tpj.12834 CrossRefGoogle Scholar
  121. 121.
    Tucker MR, Hinze A, Tucker EJ, Takada S, Jurgens G, Laux T (2008) Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 135:2839–2843.  https://doi.org/10.1242/dev.023648 CrossRefGoogle Scholar
  122. 122.
    Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256.  https://doi.org/10.1016/j.cell.2011.03.024 CrossRefGoogle Scholar
  123. 123.
    Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668.  https://doi.org/10.1242/dev.01942 CrossRefGoogle Scholar
  124. 124.
    Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774CrossRefGoogle Scholar
  125. 125.
    Green KA, Prigge MJ, Katzman RB, Clark SE (2005) CORONA, a member of the class III homeodomain leucine zipper gene family in Arabidopsis, regulates stem cell specification and organogenesis. Plant Cell 17:691–704.  https://doi.org/10.1105/tpc.104.026179 CrossRefGoogle Scholar
  126. 126.
    Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76.  https://doi.org/10.1105/tpc.104.026161 CrossRefGoogle Scholar
  127. 127.
    Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker MR, Laux T (2013) A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24:125–132.  https://doi.org/10.1016/j.devcel.2012.12.009 CrossRefGoogle Scholar
  128. 128.
    Ho MS, Ou C, Chan YR, Chien CT, Pi H (2008) The utility F-box for protein destruction. Cell Mol Life Sci 65:1977–2000.  https://doi.org/10.1007/s00018-008-7592-6 CrossRefGoogle Scholar
  129. 129.
    Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, Sakakibara H (2017) Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat Plants 3:17112.  https://doi.org/10.1038/nplants.2017.112 CrossRefGoogle Scholar
  130. 130.
    Landrein B, Formosa-Jordan P, Malivert A, Schuster C, Melnyk CW, Yang W, Turnbull C, Meyerowitz EM, Locke JCW, Jonsson H (2018) Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. Proc Natl Acad Sci USA 115:1382–1387.  https://doi.org/10.1073/pnas.1718670115 CrossRefGoogle Scholar
  131. 131.
    Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45:1053–1062.  https://doi.org/10.1093/pcp/pch119 CrossRefGoogle Scholar
  132. 132.
    Kiba T, Takei K, Kojima M, Sakakibara H (2013) Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Dev Cell 27:452–461.  https://doi.org/10.1016/j.devcel.2013.10.004 CrossRefGoogle Scholar
  133. 133.
    Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim KY, Kwon M, Endler A, Song WY, Martinoia E, Sakakibara H, Lee Y (2014) Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci USA 111:7150–7155.  https://doi.org/10.1073/pnas.1321519111 CrossRefGoogle Scholar
  134. 134.
    Yoshida S, Mandel T, Kuhlemeier C (2011) Stem cell activation by light guides plant organogenesis. Genes Dev 25:1439–1450.  https://doi.org/10.1101/gad.631211 CrossRefGoogle Scholar
  135. 135.
    Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schone S, Daum G, Suzaki T, Forner J, Langenecker T, Rempel E, Schmid M, Wirtz M, Hell R, Lohmann JU (2016) Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. Elife.  https://doi.org/10.7554/eLife.17023 CrossRefGoogle Scholar
  136. 136.
    Foyer CH, Wilson MH, Wright MH (2018) Redox regulation of cell proliferation: bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators. Free Radic Biol Med 122:137–149.  https://doi.org/10.1016/j.freeradbiomed.2018.03.047 CrossRefGoogle Scholar
  137. 137.
    Wany A, Foyer CH, Gupta KJ (2018) Nitrate, NO and ROS signaling in stem cell homeostasis. Trends Plant Sci.  https://doi.org/10.1016/j.tplants.2018.09.010 CrossRefGoogle Scholar
  138. 138.
    Noctor G, Reichheld JP, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12.  https://doi.org/10.1016/j.semcdb.2017.07.013 CrossRefGoogle Scholar
  139. 139.
    Tognetti VB, Bielach A, Hrtyan M (2017) Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk. Plant Cell Environ 40:2586–2605.  https://doi.org/10.1111/pce.13021 CrossRefGoogle Scholar
  140. 140.
    Zeng J, Dong Z, Wu H, Tian Z, Zhao Z (2017) Redox regulation of plant stem cell fate. EMBO J 36:2844–2855.  https://doi.org/10.15252/embj.201695955 CrossRefGoogle Scholar
  141. 141.
    Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616.  https://doi.org/10.1016/j.cell.2010.10.020 CrossRefGoogle Scholar
  142. 142.
    Dolzblasz A, Smakowska E, Gola EM, Sokolowska K, Kicia M, Janska H (2016) The mitochondrial protease AtFTSH4 safeguards Arabidopsis shoot apical meristem function. Sci Rep 6:28315.  https://doi.org/10.1038/srep28315 CrossRefGoogle Scholar
  143. 143.
    Trevisan S, Trentin AR, Ghisi R, Masi A, Quaggiotti S (2018) Nitrate affects transcriptional regulation of UPBEAT1 and ROS localisation in roots of Zea mays L. Physiol Plant 1:1.  https://doi.org/10.1111/ppl.12839 CrossRefGoogle Scholar
  144. 144.
    Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472.  https://doi.org/10.1111/pce.12707 CrossRefGoogle Scholar
  145. 145.
    Trevisan S, Manoli A, Begheldo M, Nonis A, Enna M, Vaccaro S, Caporale G, Ruperti B, Quaggiotti S (2011) Transcriptome analysis reveals coordinated spatiotemporal regulation of hemoglobin and nitrate reductase in response to nitrate in maize roots. New Phytol 192:338–352.  https://doi.org/10.1111/j.1469-8137.2011.03822.x CrossRefGoogle Scholar
  146. 146.
    Manoli A, Begheldo M, Genre A, Lanfranco L, Trevisan S, Quaggiotti S (2014) NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. J Exp Bot 65:185–200.  https://doi.org/10.1093/jxb/ert358 CrossRefGoogle Scholar
  147. 147.
    Sanz L, Fernandez-Marcos M, Modrego A, Lewis DR, Muday GK, Pollmann S, Duenas M, Santos-Buelga C, Lorenzo O (2014) Nitric oxide plays a role in stem cell niche homeostasis through its interaction with auxin. Plant Physiol 166:1972–1984.  https://doi.org/10.1104/pp.114.247445 CrossRefGoogle Scholar
  148. 148.
    Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409.  https://doi.org/10.1016/j.jplph.2007.08.002 CrossRefGoogle Scholar
  149. 149.
    Peaucelle A, Louvet R, Johansen JN, Hofte H, Laufs P, Pelloux J, Mouille G (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18:1943–1948.  https://doi.org/10.1016/j.cub.2008.10.065 CrossRefGoogle Scholar
  150. 150.
    Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Hofte H (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726.  https://doi.org/10.1016/j.cub.2011.08.057 CrossRefGoogle Scholar
  151. 151.
    Braybrook SA, Peaucelle A (2013) Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between auxin and pectin. PLoS One 8:e57813.  https://doi.org/10.1371/journal.pone.0057813 CrossRefGoogle Scholar
  152. 152.
    Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98:11812–11817.  https://doi.org/10.1073/pnas.191380498 CrossRefGoogle Scholar
  153. 153.
    Milani P, Gholamirad M, Traas J, Arneodo A, Boudaoud A, Argoul F, Hamant O (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67:1116–1123.  https://doi.org/10.1111/j.1365-313X.2011.04649.x CrossRefGoogle Scholar
  154. 154.
    Kierzkowski D, Nakayama N, Routier-Kierzkowska AL, Weber A, Bayer E, Schorderet M, Reinhardt D, Kuhlemeier C, Smith RS (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–1099.  https://doi.org/10.1126/science.1213100 CrossRefGoogle Scholar
  155. 155.
    Milani P, Mirabet V, Cellier C, Rozier F, Hamant O, Das P, Boudaoud A (2014) Matching patterns of gene expression to mechanical stiffness at cell resolution through quantitative tandem epifluorescence and nanoindentation. Plant Physiol 165:1399–1408.  https://doi.org/10.1104/pp.114.237115 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya UniversityNagoyaJapan
  2. 2.Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
  3. 3.Department of BiologyUniversity of WashingtonSeattleUSA
  4. 4.Howard Hughes Medical InstituteUniversity of WashingtonSeattleUSA

Personalised recommendations