Advertisement

The role of P2Y12 receptor in ischemic stroke of atherosclerotic origin

  • Ying Gao
  • Cheng Yu
  • Shulan Pi
  • Ling Mao
  • Bo Hu
Review
  • 43 Downloads

Abstract

Atherosclerosis is a chronic and progressive disease of the arterial walls and a leading cause of non-cardioembolic ischemic stroke. P2Y12 is a well-recognized receptor that is expressed on platelets and is a target of thienopyridine-type antiplatelet drugs. In the last few decades, P2Y12 receptor inhibitors, such as clopidogrel, have been applied for the secondary prevention of non-cardioembolic ischemic stroke. Recent clinical studies have suggested that these P2Y12 receptor inhibitors may be more effective than other antiplatelet drugs in patients with ischemic stroke/transient ischemic attack of atherosclerotic origin. Moreover, animal studies have also shown that the P2Y12 receptor may participate in atherogenesis by promoting the proliferation and migration of vascular smooth muscle cells (VSMCs) and endothelial dysfunction, and affecting inflammatory cell activities in addition to amplifying and maintaining ADP-induced platelet activation and platelet aggregation. P2Y12 receptor inhibitors may also exert neuroprotective effects after ischemic stroke. Thus, P2Y12 receptor inhibitors may be a better choice for secondary prevention in patients with atherosclerotic ischemic stroke subtypes because of their triple functions (i.e., their anti-atherosclerotic, anti-platelet aggregation, and neuroprotective activities), and the P2Y12 receptor may also serve as a noval therapeutic target for atherosclerosis. In this review, we summarize the current knowledge on the P2Y12 receptor and its key roles in atherosclerosis and ischemic stroke of atherosclerotic origin.

Keywords

P2Y12 Atherosclerosis Ischemic stroke Platelet Smooth muscle cell 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 81571139 to LM, No. 81571119 to BH) and National Key Research and Development Program of China (No. 2018YFC1312200).

Compliance with ethical standards

Ethical approval

These experiments comply with the current laws of the country in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 24(1):35–41CrossRefGoogle Scholar
  2. 2.
    Amarenco P, Albers GW, Denison H, Easton JD, Evans SR, Held P, Hill MD, Jonasson J, Kasner SE, Ladenvall P, Minematsu K, Molina CA, Wang Y, Wong KSL, Johnston SC, Committee SS, Investigators (2017) Efficacy and safety of ticagrelor versus aspirin in acute stroke or transient ischaemic attack of atherosclerotic origin: a subgroup analysis of SOCRATES, a randomised, double-blind, controlled trial. Lancet Neurol 16(4):301–310.  https://doi.org/10.1016/S1474-4422(17)30038-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Gachet C, Hechler B, Léon C, Vial C, Ohlmann P, Cazenave JP (1996) Purinergic receptors on blood platelets. Platelets 7(5–6):261–267.  https://doi.org/10.3109/09537109609023587 CrossRefPubMedGoogle Scholar
  4. 4.
    Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409(6817):202–207.  https://doi.org/10.1038/35051599 CrossRefPubMedGoogle Scholar
  5. 5.
    Herbert J-M, Savi P (2003) P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin Vasc Med 3(2):113–122.  https://doi.org/10.1055/s-2003-40669 CrossRefPubMedGoogle Scholar
  6. 6.
    Takasaki J, Kamohara M, Saito T, Matsumoto M, Matsumoto S, Ohishi T, Soga T, Matsushime H, Furuichi K (2001) Molecular cloning of the platelet P2T(AC) ADP receptor: pharmacological comparison with another ADP receptor, the P2Y(1) receptor. Mol Pharmacol 60(3):432–439PubMedGoogle Scholar
  7. 7.
    Foster CJ, Prosser DM, Agans JM, Zhai Y, Smith MD, Lachowicz JE, Zhang FL, Gustafson E, Monsma FJ Jr, Wiekowski MT, Abbondanzo SJ, Cook DN, Bayne ML, Lira SA, Chintala MS (2001) Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 107(12):1591–1598.  https://doi.org/10.1172/JCI12242 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cattaneo M, Lecchi A, Randi AM, McGregor JL, Mannucci PM (1992) Identification of a new congenital defect of platelet function characterized by severe impairment of platelet responses to adenosine diphosphate. Blood 80(11):2787–2796PubMedGoogle Scholar
  9. 9.
    Gachet C (2012) P2Y(12) receptors in platelets and other hematopoietic and non-hematopoietic cells. Purinergic Signal 8(3):609–619.  https://doi.org/10.1007/s11302-012-9303-x CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Norenberg W, Illes P (2000) Neuronal P2X receptors: localisation and functional properties. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):324–339CrossRefGoogle Scholar
  11. 11.
    Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341.  https://doi.org/10.1124/pr.58.3.3 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    von Kugelgen I, Wetter A (2000) Molecular pharmacology of P2Y-receptors. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):310–323CrossRefGoogle Scholar
  13. 13.
    Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA, Burnstock G (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24(2):52–55.  https://doi.org/10.1016/S0165-6147(02)00038-X CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W, Fenalti G, Zhang W, Muller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509(7498):115–118.  https://doi.org/10.1038/nature13083 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang J, Zhang K, Gao ZG, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W, Muller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Agonist-bound structure of the human P2Y12 receptor. Nature 509(7498):119–122.  https://doi.org/10.1038/nature13288 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Savi P, Zachayus JL, Delesque-Touchard N, Labouret C, Herve C, Uzabiaga MF, Pereillo JM, Culouscou JM, Bono F, Ferrara P, Herbert JM (2006) The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci USA 103(29):11069–11074.  https://doi.org/10.1073/pnas.0510446103 CrossRefPubMedGoogle Scholar
  17. 17.
    Ding Z, Bynagari YS, Mada SR, Jakubowski JA, Kunapuli SP (2009) Studies on the role of the extracellular cysteines and oligomeric structures of the P2Y12 receptor when interacting with antagonists. J Thromb Haemost 7(1):232–234.  https://doi.org/10.1111/j.1538-7836.2008.03202.x CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ Jr (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276(11):8608–8615.  https://doi.org/10.1074/jbc.M009718200 CrossRefPubMedGoogle Scholar
  19. 19.
    Garcia AE, Mada SR, Rico MC, Dela Cadena RA, Kunapuli SP (2011) Clopidogrel, a P2Y12 receptor antagonist, potentiates the inflammatory response in a rat model of peptidoglycan polysaccharide-induced arthritis. PLoS One 6(10):e26035.  https://doi.org/10.1371/journal.pone.0026035 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kauffenstein G, Hechler B, Cazenave JP, Gachet C (2004) Adenine triphosphate nucleotides are antagonists at the P2Y receptor. J Thromb Haemost 2(11):1980–1988.  https://doi.org/10.1111/j.1538-7836.2004.00926.x CrossRefPubMedGoogle Scholar
  21. 21.
    Park HS, Hourani SM (1999) Differential effects of adenine nucleotide analogues on shape change and aggregation induced by adnosine 5-diphosphate (ADP) in human platelets. Br J Pharmacol 127(6):1359–1366.  https://doi.org/10.1038/sj.bjp.0702690 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Moore CS, Ase AR, Kinsara A, Rao VT, Michell-Robinson M, Leong SY, Butovsky O, Ludwin SK, Seguela P, Bar-Or A, Antel JP (2015) P2Y12 expression and function in alternatively activated human microglia. Neurol Neuroimmunol Neuroinflamm 2(2):e80.  https://doi.org/10.1212/NXI.0000000000000080 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gelosa P, Lecca D, Fumagalli M, Wypych D, Pignieri A, Cimino M, Verderio C, Enerback M, Nikookhesal E, Tremoli E, Abbracchio MP, Sironi L (2014) Microglia is a key player in the reduction of stroke damage promoted by the new antithrombotic agent ticagrelor. J Cereb Blood Flow Metab 34(6):979–988.  https://doi.org/10.1038/jcbfm.2014.45 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ben Addi A, Cammarata D, Conley PB, Boeynaems JM, Robaye B (2010) Role of the P2Y12 receptor in the modulation of murine dendritic cell function by ADP. J Immunol 185(10):5900–5906.  https://doi.org/10.4049/jimmunol.0901799 CrossRefPubMedGoogle Scholar
  25. 25.
    Amadio S, Montilli C, Magliozzi R, Bernardi G, Reynolds R, Volonte C (2010) P2Y12 receptor protein in cortical gray matter lesions in multiple sclerosis. Cereb Cortex 20(6):1263–1273.  https://doi.org/10.1093/cercor/bhp193 (New York, NY: 1991) CrossRefPubMedGoogle Scholar
  26. 26.
    Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonte C, Aloisi F, Visentin S (2005) Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50(2):132–144.  https://doi.org/10.1002/glia.20160 CrossRefPubMedGoogle Scholar
  27. 27.
    Franke H, Krugel U, Schmidt R, Grosche J, Reichenbach A, Illes P (2001) P2 receptor-types involved in astrogliosis in vivo. Br J Pharmacol 134(6):1180–1189.  https://doi.org/10.1038/sj.bjp.0704353 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Simon J, Filippov AK, Goransson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA (2002) Characterization and channel coupling of the P2Y(12) nucleotide receptor of brain capillary endothelial cells. J Biol Chem 277(35):31390–31400.  https://doi.org/10.1074/jbc.M110714200 CrossRefPubMedGoogle Scholar
  29. 29.
    Cavelier C, Ohnsorg PM, Rohrer L, von Eckardstein A (2012) The beta-chain of cell surface F(0)F(1) ATPase modulates apoA-I and HDL transcytosis through aortic endothelial cells. Arterioscler Thromb Vasc Biol 32(1):131–139.  https://doi.org/10.1161/ATVBAHA.111.238063 CrossRefPubMedGoogle Scholar
  30. 30.
    Shanker G, Kontos JL, Eckman DM, Wesley-Farrington D, Sane DC (2006) Nicotine upregulates the expression of P2Y12 on vascular cells and megakaryoblasts. J Thromb Thrombolysis 22(3):213–220.  https://doi.org/10.1007/s11239-006-9033-4 CrossRefPubMedGoogle Scholar
  31. 31.
    Hogberg C, Svensson H, Gustafsson R, Eyjolfsson A, Erlinge D (2010) The reversible oral P2Y12 antagonist AZD6140 inhibits ADP-induced contractions in murine and human vasculature. Int J Cardiol 142(2):187–192.  https://doi.org/10.1016/j.ijcard.2008.12.091 CrossRefPubMedGoogle Scholar
  32. 32.
    Wihlborg A-K, Wang L, Braun OO, Eyjolfsson A, Gustafsson R, Gudbjartsson T, Erlinge D (2004) ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arterioscler Thromb Vasc Biol 24(10):1810–1815.  https://doi.org/10.1161/01.ATV.0000142376.30582.ed CrossRefPubMedGoogle Scholar
  33. 33.
    Su X, Floyd DH, Hughes A, Xiang J, Schneider JG, Uluckan O, Heller E, Deng H, Zou W, Craft CS, Wu K, Hirbe AC, Grabowska D, Eagleton MC, Townsley S, Collins L, Piwnica-Worms D, Steinberg TH, Novack DV, Conley PB, Hurchla MA, Rogers M, Weilbaecher KN (2012) The ADP receptor P2RY12 regulates osteoclast function and pathologic bone remodeling. J Clin Invest 122(10):3579–3592.  https://doi.org/10.1172/JCI38576 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, Robaye B, Conley PB, Kim HC, Sargin S, Schon P, Schwab A, Hanley PJ (2010) Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3(132):ra55.  https://doi.org/10.1126/scisignal.2000588 CrossRefPubMedGoogle Scholar
  35. 35.
    Isfort K, Ebert F, Bornhorst J, Sargin S, Kardakaris R, Pasparakis M, Bahler M, Schwerdtle T, Schwab A, Hanley PJ (2011) Real-time imaging reveals that P2Y2 and P2Y12 receptor agonists are not chemoattractants and macrophage chemotaxis to complement C5a is phosphatidylinositol 3-kinase (PI3K)- and p38 mitogen-activated protein kinase (MAPK)-independent. J Biol Chem 286(52):44776–44787.  https://doi.org/10.1074/jbc.M111.289793 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Diehl P, Olivier C, Halscheid C, Helbing T, Bode C, Moser M (2010) Clopidogrel affects leukocyte dependent platelet aggregation by P2Y12 expressing leukocytes. Basic Res Cardiol 105(3):379–387.  https://doi.org/10.1007/s00395-009-0073-8 CrossRefPubMedGoogle Scholar
  37. 37.
    Cattaneo M (2011) The platelet P2Y(1)(2) receptor for adenosine diphosphate: congenital and drug-induced defects. Blood 117(7):2102–2112.  https://doi.org/10.1182/blood-2010-08-263111 CrossRefPubMedGoogle Scholar
  38. 38.
    Adamski P, Kozinski M, Ostrowska M, Fabiszak T, Navarese EP, Paciorek P, Grzesk G, Kubica J (2014) Overview of pleiotropic effects of platelet P2Y12 receptor inhibitors. Thromb Haemost 112(2):224–242.  https://doi.org/10.1160/TH13-11-0915 CrossRefPubMedGoogle Scholar
  39. 39.
    Savi P, Herbert JM (2005) Clopidogrel and ticlopidine: p2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost 31(2):174–183.  https://doi.org/10.1055/s-2005-869523 CrossRefPubMedGoogle Scholar
  40. 40.
    Johnston SC, Amarenco P, Albers GW, Denison H, Easton JD, Evans SR, Held P, Jonasson J, Minematsu K, Molina CA, Wang Y, Wong KS, Committee SS, Investigators (2016) Ticagrelor versus aspirin in acute stroke or transient ischemic attack. N Engl J Med 375(1):35–43.  https://doi.org/10.1056/NEJMoa1603060 CrossRefPubMedGoogle Scholar
  41. 41.
    Committee CS (1996) A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee. Lancet 348(9038):1329–1339CrossRefGoogle Scholar
  42. 42.
    Ringleb PA, Bhatt DL, Hirsch AT, Topol EJ, Hacke W (2004) Benefit of clopidogrel over aspirin is amplified in patients with a history of ischemic events. Stroke 35(2):528–532.  https://doi.org/10.1161/01.str.0000110221.54366.49 CrossRefPubMedGoogle Scholar
  43. 43.
    Bhatt DL, Flather MD, Hacke W, Berger PB, Black HR, Boden WE, Cacoub P, Cohen EA, Creager MA, Easton JD, Hamm CW, Hankey GJ, Johnston SC, Mak KH, Mas JL, Montalescot G, Pearson TA, Steg PG, Steinhubl SR, Weber MA, Fabry-Ribaudo L, Hu T, Topol EJ, Fox KA (2007) Patients with prior myocardial infarction, stroke, or symptomatic peripheral arterial disease in the CHARISMA trial. J Am Coll Cardiol 49(19):1982–1988.  https://doi.org/10.1016/j.jacc.2007.03.025 CrossRefGoogle Scholar
  44. 44.
    Hong KS, Lee SH, Kim EG, Cho KH, Chang DI, Rha JH, Bae HJ, Lee KB, Kim DE, Park JM, Kim HY, Cha JK, Yu KH, Lee YS, Lee SJ, Choi JC, Cho YJ, Kwon SU, Kim GM, Sohn SI, Park KY, Kang DW, Sohn CH, Lee J, Yoon BW, Investigators C (2016) Recurrent ischemic lesions after acute atherothrombotic stroke: clopidogrel plus aspirin versus aspirin alone. Stroke 47(9):2323–2330.  https://doi.org/10.1161/STROKEAHA.115.012293 CrossRefPubMedGoogle Scholar
  45. 45.
    Liu L, Wong KS, Leng X, Pu Y, Wang Y, Jing J, Zou X, Pan Y, Wang A, Meng X, Wang C, Zhao X, Soo Y, Johnston SC, Wang Y (2015) Dual antiplatelet therapy in stroke and ICAS: subgroup analysis of CHANCE. Neurology 85(13):1154–1162.  https://doi.org/10.1212/wnl.0000000000001972 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Man M, Farmen M, Dumaual C, Teng CH, Moser B, Irie S, Noh GJ, Njau R, Close S, Wise S, Hockett R (2010) Genetic variation in metabolizing enzyme and transporter genes: comprehensive assessment in 3 major East Asian subpopulations with comparison to Caucasians and Africans. J Clin Pharmacol 50(8):929–940.  https://doi.org/10.1177/0091270009355161 CrossRefPubMedGoogle Scholar
  47. 47.
    Niu X, Mao L, Huang Y, Baral S, Li JY, Gao Y, Xia YP, He QW, Wang MD, Li M, Zou L, Miao XP, Hu B (2015) CYP2C19 polymorphism and clinical outcomes among patients of different races treated with clopidogrel: a systematic review and meta-analysis. J Huazhong Univ Sci Technol Med Sci 35(2):147–156.  https://doi.org/10.1007/s11596-015-1404-7 CrossRefPubMedGoogle Scholar
  48. 48.
    Wang Y, Zhao X, Lin J, Li H, Johnston SC, Lin Y, Pan Y, Liu L, Wang D, Wang C, Meng X, Xu J, Wang Y (2016) Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. JAMA 316(1):70–78.  https://doi.org/10.1001/jama.2016.8662 CrossRefPubMedGoogle Scholar
  49. 49.
    Li D, Wang Y, Zhang L, Luo X, Li J, Chen X, Niu H, Wang K, Sun Y, Wang X, Yan Y, Chai W, Gartner TK, Liu J (2012) Roles of purinergic receptor P2Y, G protein-coupled 12 in the development of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 32(8):e81–e89.  https://doi.org/10.1161/ATVBAHA.111.239095 CrossRefPubMedGoogle Scholar
  50. 50.
    West LE, Steiner T, Judge HM, Francis SE, Storey RF (2014) Vessel wall, not platelet, P2Y12 potentiates early atherogenesis. Cardiovasc Res 102(3):429–435.  https://doi.org/10.1093/cvr/cvu028 CrossRefPubMedGoogle Scholar
  51. 51.
    van der Wal AC, Becker AE (1999) Atherosclerotic plaque rupture–pathologic basis of plaque stability and instability. Cardiovasc Res 41(2):334–344CrossRefGoogle Scholar
  52. 52.
    Boulaftali Y, Owens AP 3rd, Beale A, Piatt R, Casari C, Lee RH, Conley PB, Paul DS, Mackman N, Bergmeier W (2016) CalDAG-GEFI deficiency reduces atherosclerotic lesion development in mice. Arterioscler Thromb Vasc Biol 36(5):792–799.  https://doi.org/10.1161/atvbaha.115.306347 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yashiro K, Matsumoto Y, Ihara H, Suzuki Y, Kondo K, Urano E, Umemura K (2009) Involvement of platelet activation by P2Y receptor in the development of transplant arteriosclerosis in mice. Transplantation 87(5):660–667.  https://doi.org/10.1097/TP.0b013e318196305a CrossRefPubMedGoogle Scholar
  54. 54.
    Harada K, Matsumoto Y, Umemura K (2011) Adenosine diphosphate receptor P2Y12-mediated migration of host smooth muscle-like cells and leukocytes in the development of transplant arteriosclerosis. Transplantation 92(2):148–154.  https://doi.org/10.1097/TP.0b013e318221d407 CrossRefPubMedGoogle Scholar
  55. 55.
    Afek AKE, Maysel-Auslender S, Mor A, Regev E, Rubinstein A, Keren G, George J (2009) Clopidogrel attenuates atheroma formation and induces a stable plaque phenotype in apolipoprotein E knockout mice. Microvasc Res 77(3):364–369CrossRefGoogle Scholar
  56. 56.
    Niu X, Pi SL, Baral S, Xia YP, He QW, Li YN, Jin HJ, Li M, Wang MD, Mao L, Hu B (2017) P2Y12 promotes migration of vascular smooth muscle cells through cofilin dephosphorylation during atherogenesis. Arterioscler Thromb Vasc Biol 37(3):515–524.  https://doi.org/10.1161/atvbaha.116.308725 CrossRefPubMedGoogle Scholar
  57. 57.
    Takeda M, Yamashita T, Shinohara M, Sasaki N, Tawa H, Nakajima K, Momose A, Hirata K (2012) Beneficial effect of anti-platelet therapies on atherosclerotic lesion formation assessed by phase-contrast X-ray CT imaging. Int J Cardiovasc Imaging 28(5):1181–1191.  https://doi.org/10.1007/s10554-011-9910-6 CrossRefPubMedGoogle Scholar
  58. 58.
    Heim C, Gebhardt J, Ramsperger-Gleixner M, Jacobi J, Weyand M, Ensminger SM (2016) Clopidogrel significantly lowers the development of atherosclerosis in ApoE-deficient mice in vivo. Heart Vessels 31(5):783–794.  https://doi.org/10.1007/s00380-015-0696-7 CrossRefPubMedGoogle Scholar
  59. 59.
    Preusch MR, Rusnak J, Staudacher K, Mogler C, Uhlmann L, Sievers P, Bea F, Katus HA, Blessing E, Staudacher I (2016) Ticagrelor promotes atherosclerotic plaque stability in a mouse model of advanced atherosclerosis. Drug Des Devel Ther 10:2691–2699.  https://doi.org/10.2147/DDDT.S105718 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Li M, Zhang YJ, Ren HS, Zhang YC, Zhu XL (2007) Effect of clopidogrel on the inflammatory progression of early atherosclerosis in rabbits model. Atherosclerosis 194(2):348–356.  https://doi.org/10.1016/j.atherosclerosis.2006.11.006 CrossRefPubMedGoogle Scholar
  61. 61.
    Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25(1):29–38.  https://doi.org/10.1161/01.atv.0000150649.39934.13 CrossRefPubMedGoogle Scholar
  62. 62.
    Hu L, Chang L, Zhang Y, Zhai L, Zhang S, Qi Z, Yan H, Yan Y, Luo X, Zhang S, Wang Y, Kunapuli SP, Ye H, Ding Z (2017) Platelets express activated P2Y12 receptor in patients with diabetes mellitus. Circulation 136(9):817–833.  https://doi.org/10.1161/circulationaha.116.026995 CrossRefPubMedGoogle Scholar
  63. 63.
    Daniel JL, Dangelmaier C, Jin J, Kim YB, Kunapuli SP (1999) Role of intracellular signaling events in ADP-induced platelet aggregation. Thromb Haemost 82(4):1322–1326CrossRefGoogle Scholar
  64. 64.
    Weber AA, Hohlfeld T, Schror K (1999) cAMP is an important messenger for ADP-induced platelet aggregation. Platelets 10(4):238–241.  https://doi.org/10.1080/09537109976086 CrossRefPubMedGoogle Scholar
  65. 65.
    Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115(12):3378–3384.  https://doi.org/10.1172/JCI27196 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Trumel C, Payrastre B, Plantavid M, Hechler B, Viala C, Presek P, Martinson EA, Cazenave JP, Chap H, Gachet C (1999) A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood 94(12):4156–4165Google Scholar
  67. 67.
    Cifuni SM, Wagner DD, Bergmeier W (2008) CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood 112(5):1696–1703.  https://doi.org/10.1182/blood-2008-02-139733 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Stefanini L, Bergmeier W (2010) CalDAG-GEFI and platelet activation. Platelets 21(4):239–243.  https://doi.org/10.3109/09537101003639931 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lova P, Paganini S, Sinigaglia F, Balduini C, Torti M (2002) A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets. J Biol Chem 277(14):12009–12015.  https://doi.org/10.1074/jbc.M111803200 CrossRefPubMedGoogle Scholar
  70. 70.
    Woulfe D, Jiang H, Mortensen R, Yang J, Brass LF (2002) Activation of Rap1B by G(i) family members in platelets. J Biol Chem 277(26):23382–23390.  https://doi.org/10.1074/jbc.M202212200 CrossRefPubMedGoogle Scholar
  71. 71.
    Cosemans JM, Iserbyt BF, Deckmyn H, Heemskerk JW (2008) Multiple ways to switch platelet integrins on and off. J Thromb Haemost 6(8):1253–1261.  https://doi.org/10.1111/j.1538-7836.2008.03041.x CrossRefPubMedGoogle Scholar
  72. 72.
    Hirsch E, Bosco O, Tropel P, Laffargue M, Calvez R, Altruda F, Wymann M, Montrucchio G (2001) Resistance to thromboembolism in PI3Kgamma-deficient mice. FASEB J 15(11):2019–2021.  https://doi.org/10.1096/fj.00-0810fje CrossRefPubMedGoogle Scholar
  73. 73.
    Canobbio I, Stefanini L, Cipolla L, Ciraolo E, Gruppi C, Balduini C, Hirsch E, Torti M (2009) Genetic evidence for a predominant role of PI3Kbeta catalytic activity in ITAM- and integrin-mediated signaling in platelets. Blood 114(10):2193–2196.  https://doi.org/10.1182/blood-2009-03-208074 CrossRefGoogle Scholar
  74. 74.
    Schoenwaelder SM, Ono A, Sturgeon S, Chan SM, Mangin P, Maxwell MJ, Turnbull S, Mulchandani M, Anderson K, Kauffenstein G, Rewcastle GW, Kendall J, Gachet C, Salem HH, Jackson SP (2007) Identification of a unique co-operative phosphoinositide 3-kinase signaling mechanism regulating integrin alpha IIb beta 3 adhesive function in platelets. J Biol Chem 282(39):28648–28658.  https://doi.org/10.1074/jbc.M704358200 CrossRefPubMedGoogle Scholar
  75. 75.
    Stefanini L, Paul DS, Robledo RF, Chan ER, Getz TM, Campbell RA, Kechele DO, Casari C, Piatt R, Caron KM, Mackman N, Weyrich AS, Parrott MC, Boulaftali Y, Adams MD, Peters LL, Bergmeier W (2015) RASA3 is a critical inhibitor of RAP1-dependent platelet activation. J Clin Invest 125(4):1419–1432.  https://doi.org/10.1172/jci77993 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Stefanini L, Bergmeier W (2016) RAP1-GTPase signaling and platelet function. J Mol Med 94(1):13–19.  https://doi.org/10.1007/s00109-015-1346-3 CrossRefPubMedGoogle Scholar
  77. 77.
    Garcia A, Kim S, Bhavaraju K, Schoenwaelder SM, Kunapuli SP (2010) Role of phosphoinositide 3-kinase beta in platelet aggregation and thromboxane A2 generation mediated by Gi signalling pathways. Biochem J 429(2):369–377.  https://doi.org/10.1042/bj20100166 CrossRefPubMedGoogle Scholar
  78. 78.
    Shankar H, Garcia A, Prabhakar J, Kim S, Kunapuli SP (2006) P2Y12 receptor-mediated potentiation of thrombin-induced thromboxane A2 generation in platelets occurs through regulation of Erk1/2 activation. J Thromb Haemost 4(3):638–647.  https://doi.org/10.1111/j.1538-7836.2006.01789.x CrossRefPubMedGoogle Scholar
  79. 79.
    Begonja AJ, Geiger J, Rukoyatkina N, Rauchfuss S, Gambaryan S, Walter U (2007) Thrombin stimulation of p38 MAP kinase in human platelets is mediated by ADP and thromboxane A2 and inhibited by cGMP/cGMP-dependent protein kinase. Blood 109(2):616–618.  https://doi.org/10.1182/blood-2006-07-038158 CrossRefPubMedGoogle Scholar
  80. 80.
    Tournoij E, Koekman CA, Du VX, Roest M, Ruijtenbeek R, Moll FL, Akkerman JW (2012) The platelet P2Y12 receptor contributes to granule secretion through Ephrin A4 receptor. Platelets 23(8):617–625.  https://doi.org/10.3109/09537104.2011.645924 CrossRefPubMedGoogle Scholar
  81. 81.
    Cattaneo M, Lecchi A, Lombardi R, Gachet C, Zighetti ML (2000) Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors. Arterioscler Thromb Vasc Biol 20(11):E101–E106CrossRefGoogle Scholar
  82. 82.
    Judge HM, Buckland RJ, Holgate CE, Storey RF (2005) Glycoprotein IIb/IIIa and P2Y12 receptor antagonists yield additive inhibition of platelet aggregation, granule secretion, soluble CD40L release and procoagulant responses. Platelets 16(7):398–407.  https://doi.org/10.1080/09537100500163226 CrossRefPubMedGoogle Scholar
  83. 83.
    Rauch BH, Rosenkranz AC, Ermler S, Bohm A, Driessen J, Fischer JW, Sugidachi A, Jakubowski JA, Schror K (2010) Regulation of functionally active P2Y12 ADP receptors by thrombin in human smooth muscle cells and the presence of P2Y12 in carotid artery lesions. Arterioscler Thromb Vasc Biol 30(12):2434–2442.  https://doi.org/10.1161/ATVBAHA.110.213702 CrossRefPubMedGoogle Scholar
  84. 84.
    Lee CW, Hwang I, Park CS, Lee H, Park DW, Kang SJ, Lee SW, Kim YH, Park SW, Park SJ (2011) Comparison of differential expression of P2Y(1)(2) receptor in culprit coronary plaques in patients with acute myocardial infarction versus stable angina pectoris. Am J Cardiol 108(6):799–803.  https://doi.org/10.1016/j.amjcard.2011.05.008 CrossRefPubMedGoogle Scholar
  85. 85.
    Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini W, van Hinsbergh V, Sozzani S, Bussolino F, Poli V, Ciliberto G, Mantovani A (1997) Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6(3):315–325CrossRefGoogle Scholar
  86. 86.
    Ikonomidis I, Stamatelopoulos K, Lekakis J, Vamvakou GD, Kremastinos DT (2008) Inflammatory and non-invasive vascular markers: the multimarker approach for risk stratification in coronary artery disease. Atherosclerosis 199(1):3–11.  https://doi.org/10.1016/j.atherosclerosis.2008.02.019 CrossRefPubMedGoogle Scholar
  87. 87.
    Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC, Isakson B, Randolph GJ, Owens GK (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21(6):628–637.  https://doi.org/10.1038/nm.3866 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Johnston LR, La Flamme AC, Larsen PD, Harding SA (2015) Prasugrel inhibits platelet-enhanced pro-inflammatory CD4+ T cell responses in humans. Atherosclerosis 239(1):283–286.  https://doi.org/10.1016/j.atherosclerosis.2015.01.006 CrossRefPubMedGoogle Scholar
  89. 89.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874.  https://doi.org/10.1038/nature01323 CrossRefGoogle Scholar
  90. 90.
    Steinhubl SR, Badimon JJ, Bhatt DL, Herbert JM, Luscher TF (2007) Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vasc Med 12(2):113–122.  https://doi.org/10.1177/1358863X07077462 CrossRefPubMedGoogle Scholar
  91. 91.
    Chew DP, Bhatt DL, Robbins MA, Mukherjee D, Roffi M, Schneider JP, Topol EJ, Ellis SG (2001) Effect of clopidogrel added to aspirin before percutaneous coronary intervention on the risk associated with C-reactive protein. Am J Cardiol 88(6):672–674CrossRefGoogle Scholar
  92. 92.
    Xiao Z, Théroux P (2004) Clopidogrel inhibits platelet-leukocyte interactions and thrombin receptor agonist peptide-induced platelet activation in patients with an acute coronary syndrome. J Am Coll Cardiol 43(11):1982–1988.  https://doi.org/10.1016/j.jacc.2003.10.071 CrossRefPubMedGoogle Scholar
  93. 93.
    Cha J-K, Jeong M-H, Lee K-M, Bae H-R, Lim Y-J, Park KW, Cheon S-M (2002) Changes in platelet P-selectin and in plasma C-reactive protein in acute atherosclerotic ischemic stroke treated with a loading dose of clopidogrel. J Thromb Thrombolysis 14(2):145–150CrossRefGoogle Scholar
  94. 94.
    Ganbaatar B, Fukuda D, Salim HM, Nishimoto S, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Soeki T, Sata M (2018) Ticagrelor, a P2Y12 antagonist, attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein-E-deficient mice. Atherosclerosis 275:124–132.  https://doi.org/10.1016/j.atherosclerosis.2018.05.053 CrossRefPubMedGoogle Scholar
  95. 95.
    Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519.  https://doi.org/10.1038/nn1805 CrossRefPubMedGoogle Scholar
  96. 96.
    Yamauchi K, Imai T, Shimazawa M, Iwama T, Hara H (2017) Effects of ticagrelor in a mouse model of ischemic stroke. Sci Rep 7(1):12088.  https://doi.org/10.1038/s41598-017-12205-w CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Tomizawa A, Ohno K, Jakubowski JA, Mizuno M, Sugidachi A (2015) Prasugrel reduces ischaemic infarct volume and ameliorates neurological deficits in a non-human primate model of middle cerebral artery thrombosis. Thromb Res 136(6):1224–1230.  https://doi.org/10.1016/j.thromres.2015.09.013 CrossRefPubMedGoogle Scholar
  98. 98.
    Sugidachi A, Mizuno M, Ohno K, Jakubowski JA, Tomizawa A (2016) The active metabolite of prasugrel, R-138727, improves cerebral blood flow and reduces cerebral infarction and neurologic deficits in a non-human primate model of acute ischaemic stroke. Eur J Pharmacol 788:132–139.  https://doi.org/10.1016/j.ejphar.2016.06.023 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Ultrasound, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations