Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 2, pp 283–300 | Cite as

Cerebrovascular disorders associated with genetic lesions

  • Philipp Karschnia
  • Sayoko Nishimura
  • Angeliki LouviEmail author
Review
  • 181 Downloads

Abstract

Cerebrovascular disorders are underlain by perturbations in cerebral blood flow and abnormalities in blood vessel structure. Here, we provide an overview of the current knowledge of select cerebrovascular disorders that are associated with genetic lesions and connect genomic findings with analyses aiming to elucidate the cellular and molecular mechanisms of disease pathogenesis. We argue that a mechanistic understanding of genetic (familial) forms of cerebrovascular disease is a prerequisite for the development of rational therapeutic approaches, and has wider implications for treatment of sporadic (non-familial) forms, which are usually more common.

Keywords

Cerebrovascular disease Hemorrhagic cerebrovascular disease Small vessel disease Genetics Model organisms 

Notes

Acknowledgements

We thank Drs. Murat Gunel, Charles Matouk, Branden Cord (Department of Neurosurgery, Yale School of Medicine) and Francisco Lopera (University of Antioquia, Colombia) for sharing MR and CT-angiography images and the two anonymous reviewers for suggestions. P.K. was supported by the German Academic Scholarship Foundation. Work in the Louvi laboratory is supported by the National Institutes of Health (NIH).

References

  1. 1.
    Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415Google Scholar
  2. 2.
    Walchli T, Wacker A, Frei K, Regli L, Schwab ME, Hoerstrup SP, Gerhardt H, Engelhardt B (2015) Wiring the Vascular Network with Neural Cues: a CNS Perspective. Neuron 87(2):271–296Google Scholar
  3. 3.
    Eichmann A, Thomas JL (2013) Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 3(1):a006551Google Scholar
  4. 4.
    Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243Google Scholar
  5. 5.
    Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198Google Scholar
  6. 6.
    Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80(4):844–866Google Scholar
  7. 7.
    Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18(7):419–434Google Scholar
  8. 8.
    Louvi, A. and Gunel, M., Genetics of Cerebral Cavernous Malformations, in Youmans and Winn Neurological Surgery H.R. Winn, Editor. 2017, Elsevier. p. 3547-3553Google Scholar
  9. 9.
    Barak T, Cheng Y, Youngblood MW, Yasuno K, Gunel M (2018) Genetics of intracranial aneurysms. In: Winn HR (ed) Youmans and Winn neurological surgery. Elsevier, Amsterdam, pp 3198–3206Google Scholar
  10. 10.
    NINDS Stroke Genetics Network (SiGN), International Stroke Genetics Consortium (ISGC) (2016) Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol 15(2):174–184Google Scholar
  11. 11.
    Duran D, Karschnia P, Gaillard JR, Karimy JK, Youngblood MW, DiLuna ML, Matouk CC, Aagaard-Kienitz B, Smith ER, Orbach DB, Rodesch G, Berenstein A, Gunel M, Kahle KT (2018) Human genetics and molecular mechanisms of vein of Galen malformation. J Neurosurg Pediatr 21:1–8Google Scholar
  12. 12.
    Luschka H (1854) Cavernose Blutgeschwulste des Gehirns. Virch Arch Path Anat. 6(4):457–470Google Scholar
  13. 13.
    Cushing H, Bailey P (1928) Tumors arising from the blood vessels of the brain: angiomatous malformations and hemangioblastomas, vol 3. Thomas, C.C., SpringfieldGoogle Scholar
  14. 14.
    Dandy WE (1928) Arteriovenous aneurysm of the brain. Arch Surg 17:190–243Google Scholar
  15. 15.
    Dandy WE (1928) Venous abnormalities and angiomas of the brain. Arch Surg 17:715–793Google Scholar
  16. 16.
    McCormick WF (1966) The pathology of vascular (“arteriovenous”) malformations. J Neurosurg 24(4):807–816Google Scholar
  17. 17.
    Russell DS, Rubenstein LJ (1989) Pathology of tumors of the nervous system. Williams and Wilkins, BaltimoreGoogle Scholar
  18. 18.
    McCormick WF (1984) Pathology of vascular malformations of the brain in Intracranial Vascular Malformations In: Wilson CB, Stein BM (eds), Williams & Wilkins, Baltimore, pp 44–63Google Scholar
  19. 19.
    Demick DA (1991) Cerebrovascular malformation causing sudden death. Analysis of three cases and review of the literature. Am J Forensic Med Pathol 12(1):45–49Google Scholar
  20. 20.
    Berenstein A, Lasjaunias P, ter Brugge KG (2004) Cerebral vascular malformations: incidence, classification, angioarchitecture, and symptomatology of brain arteriovenous and venous malformations, in surgical neuroangiography. Springer: Berlin, Heidelberg, pp 609–694Google Scholar
  21. 21.
    Bos D, Poels MM, Adams HH, Akoudad S, Cremers LG, Zonneveld HI, Hoogendam YY, Verhaaren BF, Verlinden VJ, Verbruggen JG, Peymani A, Hofman A, Krestin GP, Vincent AJ, Feelders RA, Koudstaal PJ, van der Lugt A, Ikram MA, Vernooij MW (2016) Prevalence, clinical management, and natural course of incidental findings on brain mr images: the population-based rotterdam scan study. Radiology 281(2):507–515Google Scholar
  22. 22.
    Berry RG, Alpers BJ, White JC (1966) The site, structure and frequency of intracranial aneurysms, angiomas and arteriovenous abnormalities. Res Publ Assoc Res Nerv Ment Dis 41:40–72Google Scholar
  23. 23.
    Otten P, Pizzolato GP, Rilliet B, Berney J (1989) 131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies. Neurochirurgie 35(2):82–83 (128-31) Google Scholar
  24. 24.
    Del Jr Curling O, Jr Kelly DL, Elster AD, Craven TE (1991) An analysis of the natural history of cavernous angiomas. J Neurosurg 75(5):702–708Google Scholar
  25. 25.
    Robinson JR, Awad IA, Little JR (1991) Natural history of the cavernous angioma. J Neurosurg 75(5):709–714Google Scholar
  26. 26.
    Sage MR, Brophy BP, Sweeney C, Phipps S, Perrett LV, Sandhu A, Albertyn LE (1993) Cavernous haemangiomas (angiomas) of the brain: clinically significant lesions. Australas Radiol 37(2):147–155Google Scholar
  27. 27.
    Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, Niessen WJ, Breteler MM, van der Lugt A (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357(18):1821–1828Google Scholar
  28. 28.
    Morris Z, Whiteley WN, Longstreth WT Jr, Weber F, Lee YC, Tsushima Y, Alphs H, Ladd SC, Warlow C, Wardlaw JM, Al-Shahi Salman R (2009) Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 339:b3016Google Scholar
  29. 29.
    Flemming KD, Graff-Radford J, Aakre J, Kantarci K, Lanzino G, Brown RD Jr, Mielke MM, Roberts RO, Kremers W, Knopman DS, Petersen RC, Jack CR Jr (2017) Population-based prevalence of cerebral cavernous malformations in older adults: mayo clinic study of aging. JAMA Neurol 74(7):801–805Google Scholar
  30. 30.
    Campbell PG, Jabbour P, Yadla S, Awad IA (2010) Emerging clinical imaging techniques for cerebral cavernous malformations: a systematic review. Neurosurg Focus 29(3):E6Google Scholar
  31. 31.
    Hart BL, Taheri S, Rosenberg GA, Morrison LA (2013) Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations. Transl Stroke Res 4(5):500–506Google Scholar
  32. 32.
    Tan H, Liu T, Wu Y, Thacker J, Shenkar R, Mikati AG, Shi C, Dykstra C, Wang Y, Prasad PV, Edelman RR, Awad IA (2014) Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Invest Radiol 49(7):498–504Google Scholar
  33. 33.
    Moultrie F, Horne MA, Josephson CB, Hall JM, Counsell CE, Bhattacharya JJ, Papanastassiou V, Sellar RJ, Warlow CP, Murray GD, Al-Shahi Salman R, Scottish Audit of Intracranial Vascular Malformations steering, c., and collaborators (2014) Outcome after surgical or conservative management of cerebral cavernous malformations. Neurology 83(7):582–589Google Scholar
  34. 34.
    Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, Brown B, Rigamonti D, Brown G (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80(3):422–432Google Scholar
  35. 35.
    Zabramski JM, Kalani YS (2017) Natural history of cavernous malformations. In: Winn HR (ed) Youmans and Winn neurological surgery. Elsevier, Amsterdam, pp 3537–3546Google Scholar
  36. 36.
    Siegel AM, Andermann E, Badhwar A, Rouleau GA, Wolford GL, Andermann F, Hess K (1998) Anticipation in familial cavernous angioma: a study of 52 families from International Familial Cavernous Angioma Study. IFCAS Group. Lancet 352(9141):1676–1677Google Scholar
  37. 37.
    Kufs H (1928) Uber die heredofamilare Angiomatose des Gehirns und der Retina, ihre Beziehingen zueinander und sur Angiomatose der Haut. Z Neurol Psychiatrie 113:651–686Google Scholar
  38. 38.
    Dubovsky J, Zabramski JM, Kurth J, Spetzler RF, Rich SS, Orr HT, Weber JL (1995) A gene responsible for cavernous malformations of the brain maps to chromosome 7q. Hum Mol Genet 4(3):453–458Google Scholar
  39. 39.
    Gunel M, Awad IA, Anson J, Lifton RP (1995) Mapping a gene causing cerebral cavernous malformation to 7q11.2-q21. Proc Natl Acad Sci USA 92(14):6620–6624Google Scholar
  40. 40.
    Johnson EW, Iyer LM, Rich SS, Orr HT, Gil-Nagel A, Kurth JH, Zabramski JM, Marchuk DA, Weissenbach J, Clericuzio CL, Davis LE, Hart BL, Gusella JF, Kosofsky BE, Louis DN, Morrison LA, Green ED, Weber JL (1995) Refined localization of the cerebral cavernous malformation gene (CCM1) to a 4-cM interval of chromosome 7q contained in a well-defined YAC contig. Genome Res 5(4):368–380Google Scholar
  41. 41.
    Gil-Nagel A, Dubovsky J, Wilcox KJ, Stewart JM, Anderson VE, Leppik IE, Orr HT, Johnson EW, Weber JL, Rich SS (1996) Familial cerebral cavernous angioma: a gene localized to a 15-cM interval on chromosome 7q. Ann Neurol 39(6):807–810Google Scholar
  42. 42.
    Notelet L, Chapon F, Khoury S, Vahedi K, Chodkiewicz JP, Courtheoux P, Iba-Zizen MT, Cabanis EA, Lechevalier B, Tournier-Lasserve E, Houtteville JP (1997) Familial cavernous malformations in a large French kindred: mapping of the gene to the CCM1 locus on chromosome 7q. J Neurol Neurosurg Psychiatry 63(1):40–45Google Scholar
  43. 43.
    Craig HD, Gunel M, Cepeda O, Johnson EW, Ptacek L, Steinberg GK, Ogilvy CS, Berg MJ, Crawford SC, Scott RM, Steichen-Gersdorf E, Sabroe R, Kennedy CT, Mettler G, Beis MJ, Fryer A, Awad IA, Lifton RP (1998) Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15-13 and 3q25.2-27. Hum Mol Genet 7(12):1851–1858Google Scholar
  44. 44.
    Laberge-le Couteulx S, Jung HH, Labauge P, Houtteville JP, Lescoat C, Cecillon M, Marechal E, Joutel A, Bach JF, Tournier-Lasserve E (1999) Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23(2):189–193Google Scholar
  45. 45.
    Liquori CL, Berg MJ, Siegel AM, Huang E, Zawistowski JS, Stoffer T, Verlaan D, Balogun F, Hughes L, Leedom TP, Plummer NW, Cannella M, Maglione V, Squitieri F, Johnson EW, Rouleau GA, Ptacek L, Marchuk DA (2003) Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73(6):1459–1464Google Scholar
  46. 46.
    Denier C, Goutagny S, Labauge P, Krivosic V, Arnoult M, Cousin A, Benabid AL, Comoy J, Frerebeau P, Gilbert B, Houtteville JP, Jan M, Lapierre F, Loiseau H, Menei P, Mercier P, Moreau JJ, Nivelon-Chevallier A, Parker F, Redondo AM, Scarabin JM, Tremoulet M, Zerah M, Maciazek J, Tournier-Lasserve E (2004) Mutations within the MGC4607 gene cause cerebral cavernous malformations. Am J Hum Genet 74(2):326–337Google Scholar
  47. 47.
    Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M, Coubes P, Echenne B, Ibrahim R, Irthum B, Jacquet G, Lonjon M, Moreau JJ, Neau JP, Parker F, Tremoulet M, Tournier-Lasserve E (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76(1):42–51Google Scholar
  48. 48.
    Guclu B, Ozturk AK, Pricola KL, Bilguvar K, Shin D, O’Roak BJ, Gunel M (2005) Mutations in apoptosis-related gene, PDCD10, cause cerebral cavernous malformation 3. Neurosurgery 57(5):1008–1013Google Scholar
  49. 49.
    Liquori CL, Berg MJ, Squitieri F, Ottenbacher M, Sorlie M, Leedom TP, Cannella M, Maglione V, Ptacek L, Johnson EW, Marchuk DA (2006) Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus. Hum Mutat 27(1):118Google Scholar
  50. 50.
    Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E (2010) Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J 277(5):1070–1075Google Scholar
  51. 51.
    Riant F, Bergametti F, Fournier HD, Chapon F, Michalak-Provost S, Cecillon M, Lejeune P, Hosseini H, Choe C, Orth M, Bernreuther C, Boulday G, Denier C, Labauge P, Tournier-Lasserve E (2013) CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple meningiomas. Mol Syndromol 4(4):165–172Google Scholar
  52. 52.
    Shenkar R, Shi C, Rebeiz T, Stockton RA, McDonald DA, Mikati AG, Zhang L, Austin C, Akers AL, Gallione CJ, Rorrer A, Gunel M, Min W, De Souza JM, Lee C, Marchuk DA, Awad IA (2015) Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 17(3):188–196Google Scholar
  53. 53.
    McDonald DA, Shi C, Shenkar R, Gallione CJ, Akers AL, Li S, De Castro N, Berg MJ, Corcoran DL, Awad IA, Marchuk DA (2014) Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 23(16):4357–4370Google Scholar
  54. 54.
    Spiegler S, Rath M, Hoffjan S, Dammann P, Sure U, Pagenstecher A, Strom T, Felbor U (2017) First large genomic inversion in familial cerebral cavernous malformation identified by whole genome sequencing. Neurogenetics 19:55–59Google Scholar
  55. 55.
    Denier C, Labauge P, Bergametti F, Marchelli F, Riant F, Arnoult M, Maciazek J, Vicaut E, Brunereau L, Tournier-Lasserve E, Societe Francaise de N (2006) Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 60(5):550–556Google Scholar
  56. 56.
    Choquet H, Pawlikowska L, Lawton MT, Kim H (2015) Genetics of cerebral cavernous malformations: current status and future prospects. J Neurosurg Sci 59(3):211–220Google Scholar
  57. 57.
    Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823Google Scholar
  58. 58.
    Gault J, Awad IA, Recksiek P, Shenkar R, Breeze R, Handler M, Kleinschmidt-DeMasters BK (2009) Cerebral cavernous malformations: somatic mutations in vascular endothelial cells. Neurosurgery 65(1):138–144 (discussion 144-5) Google Scholar
  59. 59.
    Gault J, Shenkar R, Recksiek P, Awad IA (2005) Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke 36(4):872–874Google Scholar
  60. 60.
    Draheim KM, Fisher OS, Boggon TJ, Calderwood DA (2014) Cerebral cavernous malformation proteins at a glance. J Cell Sci 127(Pt 4):701–707Google Scholar
  61. 61.
    Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA (2009) Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 18(5):919–930Google Scholar
  62. 62.
    Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, Mayo AH, Drakos SG, Marchuk DA, Davis GE, Li DY (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15(2):177–184Google Scholar
  63. 63.
    Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY (2004) Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development 131(6):1437–1448Google Scholar
  64. 64.
    Boulday G, Blecon A, Petit N, Chareyre F, Garcia LA, Niwa-Kawakita M, Giovannini M, Tournier-Lasserve E (2009) Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Model Mech 2(3–4):168–177Google Scholar
  65. 65.
    He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, Min W (2010) Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal 3(116):ra26Google Scholar
  66. 66.
    Guzeloglu-Kayisli O, Kayisli UA, Amankulor NM, Voorhees JR, Gokce O, DiLuna ML, Laurans MS, Luleci G, Gunel M (2004) Krev1 interaction trapped-1/cerebral cavernous malformation-1 protein expression during early angiogenesis. J Neurosurg 100(5 Suppl Pediatrics):481–487Google Scholar
  67. 67.
    Seker A, Pricola KL, Guclu B, Ozturk AK, Louvi A, Gunel M (2006) CCM2 expression parallels that of CCM1. Stroke 37(2):518–523Google Scholar
  68. 68.
    Tanriover G, Boylan AJ, Diluna ML, Pricola KL, Louvi A, Gunel M (2008) PDCD10, the gene mutated in cerebral cavernous malformation 3, is expressed in the neurovascular unit. Neurosurgery 62(4):930–938 (discussion 938) Google Scholar
  69. 69.
    Plummer NW, Squire TL, Srinivasan S, Huang E, Zawistowski JS, Matsunami H, Hale LP, Marchuk DA (2006) Neuronal expression of the Ccm2 gene in a new mouse model of cerebral cavernous malformations. Mamm Genome 17(2):119–128Google Scholar
  70. 70.
    Gunel M, Awad IA, Finberg K, Steinberg GK, Craig HD, Cepeda O, Nelson-Williams C, Lifton RP (1996) Genetic heterogeneity of inherited cerebral cavernous malformation. Neurosurgery 38(6):1265–1271Google Scholar
  71. 71.
    Labauge P, Laberge S, Brunereau L, Levy C, Tournier-Lasserve E (1998) Hereditary cerebral cavernous angiomas: clinical and genetic features in 57 French families. Societe Francaise de Neurochirurgie. Lancet 352(9144):1892–1897Google Scholar
  72. 72.
    Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti K, Knight JT, Spetzler RF (1988) Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med 319(6):343–347Google Scholar
  73. 73.
    Hayman LA, Evans RA, Ferrell RE, Fahr LM, Ostrow P, Riccardi VM (1982) Familial cavernous angiomas: natural history and genetic study over a 5-year period. Am J Med Genet 11(2):147–160Google Scholar
  74. 74.
    Gunel M, Awad IA, Finberg K, Anson JA, Steinberg GK, Batjer HH, Kopitnik TA, Morrison L, Giannotta SL, Nelson-Williams C, Lifton RP (1996) A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. N Engl J Med 334(15):946–951Google Scholar
  75. 75.
    Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, Mayo AH, Drakos SG, Jones CA, Zhu W, Marchuk DA, Davis GE, Li DY (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15(2):177–184Google Scholar
  76. 76.
    Kleaveland B, Zheng X, Liu JJ, Blum Y, Tung JJ, Zou Z, Chen M, Guo L, Lu MM, Zhou D, Kitajewski J, Affolter M, Ginsberg MH, Kahn ML (2009) Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med 15(2):169–176Google Scholar
  77. 77.
    Chan AC, Drakos SG, Ruiz OE, Smith AC, Gibson CC, Ling J, Passi SF, Stratman AN, Sacharidou A, Revelo MP, Grossmann AH, Diakos NA, Davis GE, Metzstein MM, Whitehead KJ, Li DY (2011) Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. J Clin Invest 121(5):1871–1881Google Scholar
  78. 78.
    Zheng X, Xu C, Di Lorenzo A, Kleaveland B, Zou Z, Seiler C, Chen M, Cheng L, Xiao J, He J, Pack MA, Sessa WC, Kahn ML (2010) CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. J Clin Invest 120(8):2795–2804Google Scholar
  79. 79.
    Yoruk B, Gillers BS, Chi NC, Scott IC (2012) Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. Dev Biol 362(2):121–131Google Scholar
  80. 80.
    Lisowska J, Rodel CJ, Manet S, Miroshnikova YA, Boyault C, Planus E, De Mets R, Lee HH, Destaing O, Mertani H, Boulday G, Tournier-Lasserve E, Balland M, Abdelilah-Seyfried S, Albiges-Rizo C, Faurobert E (2018) Cerebral Cavernous Malformation 1/2 complex controls ROCK1 and ROCK2 complementary functions for endothelial integrity. J Cell Sci 1:ics-216093Google Scholar
  81. 81.
    Cunningham K, Uchida Y, O’Donnell E, Claudio E, Li W, Soneji K, Wang H, Mukouyama YS, Siebenlist U (2011) Conditional deletion of Ccm2 causes hemorrhage in the adult brain: a mouse model of human cerebral cavernous malformations. Hum Mol Genet 20(16):3198–3206Google Scholar
  82. 82.
    Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, Tournier-Lasserve E, Chapon F, Richichi C, Retta SF, Lampugnani MG, Dejana E (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498(7455):492–496Google Scholar
  83. 83.
    Nishimura S, Mishra-Gorur K, Park J, Surovtseva YV, Sebti SM, Levchenko A, Louvi A, Gunel M (2017) Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci USA 114(21):5503–5508Google Scholar
  84. 84.
    Zhou HJ, Qin L, Zhang H, Tang W, Ji W, He Y, Liang X, Wang Z, Yuan Q, Vortmeyer A, Toomre D, Fuh G, Yan M, Kluger MS, Wu D, Min W (2016) Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med 22(9):1033–1042Google Scholar
  85. 85.
    Louvi A, Chen L, Two AM, Zhang H, Min W, Gunel M (2011) Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci U S A 108(9):3737–3742Google Scholar
  86. 86.
    Louvi A, Nishimura S, Gunel M (2014) Ccm3, a gene associated with cerebral cavernous malformations, is required for neuronal migration. Development 141(6):1404–1415Google Scholar
  87. 87.
    Fisher OS, Zhang R, Li X, Murphy JW, Demeler B, Boggon TJ (2013) Structural studies of cerebral cavernous malformations 2 (CCM2) reveal a folded helical domain at its C-terminus. FEBS Lett 587(3):272–277Google Scholar
  88. 88.
    Baranoski JF, Kalani MY, Przybylowski CJ, Zabramski JM (2016) Cerebral cavernous malformations: review of the genetic and protein-protein interactions resulting in disease pathogenesis. Front Surg 3:60Google Scholar
  89. 89.
    Gingras AR, Puzon-McLaughlin W, Ginsberg MH (2013) The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail. J Biol Chem 288(33):23639–23649Google Scholar
  90. 90.
    Zawistowski JS, Serebriiskii IG, Lee MF, Golemis EA, Marchuk DA (2002) KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. Hum Mol Genet 11(4):389–396Google Scholar
  91. 91.
    Liu W, Draheim KM, Zhang R, Calderwood DA, Boggon TJ (2013) Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol Cell 49(4):719–729Google Scholar
  92. 92.
    Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE, Horne EA, Dell’Acqua ML, Johnson GL (2003) Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5(12):1104–1110Google Scholar
  93. 93.
    Zawistowski JS, Stalheim L, Uhlik MT, Abell AN, Ancrile BB, Johnson GL, Marchuk DA (2005) CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet 14(17):2521–2531Google Scholar
  94. 94.
    Li X, Ji W, Zhang R, Folta-Stogniew E, Min W, Boggon TJ (2011) Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3). J Biol Chem 286(29):26138–26147Google Scholar
  95. 95.
    Ceccarelli DF, Laister RC, Mulligan VK, Kean MJ, Goudreault M, Scott IC, Derry WB, Chakrabartty A, Gingras AC, Sicheri F (2011) CCM3/PDCD10 heterodimerizes with germinal center kinase III (GCKIII) proteins using a mechanism analogous to CCM3 homodimerization. J Biol Chem 286(28):25056–25064Google Scholar
  96. 96.
    Draheim KM, Li X, Zhang R, Fisher OS, Villari G, Boggon TJ, Calderwood DA (2015) CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network formation. J Cell Biol 208(7):987–1001Google Scholar
  97. 97.
    Goudreault M, D’Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B, Gingras AC (2009) A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteom 8(1):157–171Google Scholar
  98. 98.
    Kean MJ, Ceccarelli DF, Goudreault M, Sanches M, Tate S, Larsen B, Gibson LC, Derry WB, Scott IC, Pelletier L, Baillie GS, Sicheri F, Gingras AC (2011) Structure-function analysis of core STRIPAK Proteins: a signaling complex implicated in Golgi polarization. J Biol Chem 286(28):25065–25075Google Scholar
  99. 99.
    Lant B, Yu B, Goudreault M, Holmyard D, Knight JD, Xu P, Zhao L, Chin K, Wallace E, Zhen M, Gingras AC, Derry WB (2015) CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling. Nat Commun 6:6449Google Scholar
  100. 100.
    Xu X, Wang X, Ding J, da Wang C (2012) Crystallization and preliminary crystallographic studies of CCM3 in complex with the C-terminal domain of MST4. Acta Crystallogr Sect F Struct Biol Cryst Commun 68(Pt 7):760–763Google Scholar
  101. 101.
    Hilder TL, Malone MH, Bencharit S, Colicelli J, Haystead TA, Johnson GL, Wu CC (2007) Proteomic identification of the cerebral cavernous malformation signaling complex. J Proteome Res 6(11):4343–4355Google Scholar
  102. 102.
    Zhou Z, Rawnsley DR, Goddard LM, Pan W, Cao XJ, Jakus Z, Zheng H, Yang J, Arthur JS, Whitehead KJ, Li D, Zhou B, Garcia BA, Zheng X, Kahn ML (2015) The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 32(2):168–180Google Scholar
  103. 103.
    Wang X, Hou Y, Deng K, Zhang Y, Wang DC, Ding J (2015) Structural insights into the molecular recognition between cerebral cavernous malformation 2 and mitogen-activated protein kinase kinase kinase 3. Structure 23(6):1087–1096Google Scholar
  104. 104.
    Fisher OS, Deng H, Liu D, Zhang Y, Wei R, Deng Y, Zhang F, Louvi A, Turk BE, Boggon TJ, Su B (2015) Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun 6:7937Google Scholar
  105. 105.
    Cullere X, Plovie E, Bennett PM, MacRae CA, Mayadas TN (2015) The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci USA 112(46):14284–14289Google Scholar
  106. 106.
    Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, Morini MF, Maddaluno L, Baeyens N, Adams RH, Jain MK, Owens GK, Schwartz M, Lampugnani MG, Dejana E (2015) KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 8(1):6–24Google Scholar
  107. 107.
    Zhou Z, Tang AT, Wong WY, Bamezai S, Goddard LM, Shenkar R, Zhou S, Yang J, Wright AC, Foley M, Arthur JS, Whitehead KJ, Awad IA, Li DY, Zheng X, Kahn ML (2016) Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532(7597):122–126Google Scholar
  108. 108.
    Bravi L, Malinverno M, Pisati F, Rudini N, Cuttano R, Pallini R, Martini M, Larocca LM, Locatelli M, Levi V, Bertani GA, Dejana E, Lampugnani MG (2016) Endothelial cells lining sporadic cerebral cavernous malformation cavernomas undergo endothelial-to-mesenchymal transition. Stroke 47(3):886–890Google Scholar
  109. 109.
    Cunha SI, Magnusson PU, Dejana E, Lampugnani MG (2017) Deregulated TGF-beta/BMP signaling in vascular malformations. Circ Res 121(8):981–999Google Scholar
  110. 110.
    Crose LE, Hilder TL, Sciaky N, Johnson GL (2009) Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells. J Biol Chem 284(20):13301–13305Google Scholar
  111. 111.
    Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S, Johnson GL (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285(16):11760–11764Google Scholar
  112. 112.
    Stockton RA, Shenkar R, Awad IA, Ginsberg MH (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207(4):881–896Google Scholar
  113. 113.
    McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH, Kucherlapati R, Brainer J, Ginsberg MH, Awad IA, Marchuk DA (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20(2):211–222Google Scholar
  114. 114.
    McDonald DA, Shi C, Shenkar R, Stockton RA, Liu F, Ginsberg MH, Marchuk DA, Awad IA (2012) Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43(2):571–574Google Scholar
  115. 115.
    Faurobert E, Rome C, Lisowska J, Manet-Dupe S, Boulday G, Malbouyres M, Balland M, Bouin AP, Keramidas M, Bouvard D, Coll JL, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C (2013) CCM1-ICAP-1 complex controls beta1 integrin-dependent endothelial contractility and fibronectin remodeling. J Cell Biol 202(3):545–561Google Scholar
  116. 116.
    Richardson BT, Dibble CF, Borikova AL, Johnson GL (2013) Cerebral cavernous malformation is a vascular disease associated with activated RhoA signaling. Biol Chem 394(1):35–42Google Scholar
  117. 117.
    Bond LM, Sellers JR, McKerracher L (2015) Rho kinase as a target for cerebral vascular disorders. Future Med Chem 7(8):1039–1053Google Scholar
  118. 118.
    Shenkar R, Shi C, Austin C, Moore T, Lightle R, Cao Y, Zhang L, Wu M, Zeineddine HA, Girard R, McDonald DA, Rorrer A, Gallione C, Pytel P, Liao JK, Marchuk DA, Awad IA (2017) RhoA kinase inhibition with fasudil versus simvastatin in murine models of cerebral cavernous malformations. Stroke 48(1):187–194Google Scholar
  119. 119.
    Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, Walker AE, Goitre L, Delle Monache S, Retta SF, Shiu YT, Grossmann AH, Thomas KR, Donato AJ, Lesniewski LA, Whitehead KJ, Li DY (2015) Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131(3):289–299Google Scholar
  120. 120.
    Bravi L, Rudini N, Cuttano R, Giampietro C, Maddaluno L, Ferrarini L, Adams RH, Corada M, Boulday G, Tournier-Lasserve E, Dejana E, Lampugnani MG (2015) Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc Natl Acad Sci USA 112(27):8421–8426Google Scholar
  121. 121.
    Fogelholm R, Hernesniemi J, Vapalahti M (1993) Impact of early surgery on outcome after aneurysmal subarachnoid hemorrhage. A population-based study. Stroke 24(11):1649–1654Google Scholar
  122. 122.
    Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ (2009) Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol 8(7):635–642Google Scholar
  123. 123.
    Connolly ES Jr, Choudhri TF, Mack WJ, Mocco J, Spinks TJ, Slosberg J, Lin T, Huang J, Solomon RA (2001) Influence of smoking, hypertension, and sex on the phenotypic expression of familial intracranial aneurysms in siblings. Neurosurgery 48(1):64–68 (discussion 68-9) Google Scholar
  124. 124.
    Ishibashi T, Murayama Y, Urashima M, Saguchi T, Ebara M, Arakawa H, Irie K, Takao H, Abe T (2009) Unruptured intracranial aneurysms: incidence of rupture and risk factors. Stroke 40(1):313–316Google Scholar
  125. 125.
    Chambers WR, Harper BF Jr, Simpson JR (1954) Familial incidence of congenital aneurysms of cerebral arteries: report of cases of ruptured aneurysms in father and son. J Am Med Assoc 155(4):358–359Google Scholar
  126. 126.
    Graf CJ (1966) Familial intracranial aneurysms. J Neurosurg 25(3):304–308Google Scholar
  127. 127.
    Beumont PJ (1968) The familial occurrence of berry aneurysm. J Neurol Neurosurg Psychiatry 31(4):399–402Google Scholar
  128. 128.
    Schievink WI, Schaid DJ, Michels VV, Piepgras DG (1995) Familial aneurysmal subarachnoid hemorrhage: a community-based study. J Neurosurg 83(3):426–429Google Scholar
  129. 129.
    Graf S, Schischma A, Eberhardt KE, Istel R, Stiasny B, Schulze BD (2002) Intracranial aneurysms and dolichoectasia in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 17(5):819–823Google Scholar
  130. 130.
    Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH (2014) Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med 16(12):881–888Google Scholar
  131. 131.
    O’Connell D, Kaliaperumal C, Fanning N, Wyse G, Kaar G (2012) Superior cerebellar aneurysm causing subarachnoid haemorrhage in a 17-year-old with alagille syndrome. Br J Neurosurg 26(2):287–289Google Scholar
  132. 132.
    Schievink WI, Riedinger M, Maya MM (2005) Frequency of incidental intracranial aneurysms in neurofibromatosis type 1. Am J Med Genet A 134A(1):45–48Google Scholar
  133. 133.
    Onda H, Kasuya H, Yoneyama T, Takakura K, Hori T, Takeda J, Nakajima T, Inoue I (2001) Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet 69(4):804–819Google Scholar
  134. 134.
    Peters DG, Kassam AB, Feingold E, Heidrich-O’Hare E, Yonas H, Ferrell RE, Brufsky A (2001) Molecular anatomy of an intracranial aneurysm: coordinated expression of genes involved in wound healing and tissue remodeling. Stroke 32(4):1036–1042Google Scholar
  135. 135.
    Farnham JM, Camp NJ, Neuhausen SL, Tsuruda J, Parker D, MacDonald J, Cannon-Albright LA (2004) Confirmation of chromosome 7q11 locus for predisposition to intracranial aneurysm. Hum Genet 114(3):250–255Google Scholar
  136. 136.
    Nahed BV, Seker A, Guclu B, Ozturk AK, Finberg K, Hawkins AA, DiLuna ML, State M, Lifton RP, Gunel M (2005) Mapping a Mendelian form of intracranial aneurysm to 1p34.3-p36.13. Am J Hum Genet 76(1):172–179Google Scholar
  137. 137.
    Ozturk AK, Nahed BV, Bydon M, Bilguvar K, Goksu E, Bademci G, Guclu B, Johnson MH, Amar A, Lifton RP, Gunel M (2006) Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke 37(4):1021–1027Google Scholar
  138. 138.
    Ruigrok YM, Wijmenga C, Rinkel GJ, van’t Slot R, Baas F, Wolfs M, Westerveld A, Roos YB (2008) Genomewide linkage in a large Dutch family with intracranial aneurysms: replication of 2 loci for intracranial aneurysms to chromosome 1p36.11-p36.13 and Xp22.2-p22.32. Stroke 39(4):1096–1102Google Scholar
  139. 139.
    Bilguvar K, Yasuno K, Niemela M, Ruigrok YM, von Und Zu Fraunberg M, van Duijn CM, van den Berg LH, Mane S, Mason CE, Choi M, Gaal E, Bayri Y, Kolb L, Arlier Z, Ravuri S, Ronkainen A, Tajima A, Laakso A, Hata A, Kasuya H, Koivisto T, Rinne J, Ohman J, Breteler MM, Wijmenga C, State MW, Rinkel GJ, Hernesniemi J, Jaaskelainen JE, Palotie A, Inoue I, Lifton RP, Gunel M (2008) Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet 40(12):1472–1477Google Scholar
  140. 140.
    Yasuno K, Bilguvar K, Bijlenga P, Low SK, Krischek B, Auburger G, Simon M, Krex D, Arlier Z, Nayak N, Ruigrok YM, Niemela M, Tajima A, von und zu Fraunberg M, Doczi T, Wirjatijasa F, Hata A, Blasco J, Oszvald A, Kasuya H, Zilani G, Schoch B, Singh P, Stuer C, Risselada R, Beck J, Sola T, Ricciardi F, Aromaa A, Illig T, Schreiber S, van Duijn CM, van den Berg LH, Perret C, Proust C, Roder C, Ozturk AK, Gaal E, Berg D, Geisen C, Friedrich CM, Summers P, Frangi AF, State MW, Wichmann HE, Breteler MM, Wijmenga C, Mane S, Peltonen L, Elio V, Sturkenboom MC, Lawford P, Byrne J, Macho J, Sandalcioglu EI, Meyer B, Raabe A, Steinmetz H, Rufenacht D, Jaaskelainen JE, Hernesniemi J, Rinkel GJ, Zembutsu H, Inoue I, Palotie A, Cambien F, Nakamura Y, Lifton RP, Gunel M (2010) Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet 42(5):420–425Google Scholar
  141. 141.
    Yasuno K, Bakircioglu M, Low SK, Bilguvar K, Gaal E, Ruigrok YM, Niemela M, Hata A, Bijlenga P, Kasuya H, Jaaskelainen JE, Krex D, Auburger G, Simon M, Krischek B, Ozturk AK, Mane S, Rinkel GJ, Steinmetz H, Hernesniemi J, Schaller K, Zembutsu H, Inoue I, Palotie A, Cambien F, Nakamura Y, Lifton RP, Gunel M (2011) Common variant near the endothelin receptor type A (EDNRA) gene is associated with intracranial aneurysm risk. Proc Natl Acad Sci USA 108(49):19707–19712Google Scholar
  142. 142.
    Foroud T, Koller DL, Lai D, Sauerbeck L, Anderson C, Ko N, Deka R, Mosley TH, Fornage M, Woo D, Moomaw CJ, Hornung R, Huston J, Meissner I, Bailey-Wilson JE, Langefeld C, Rouleau G, Connolly ES, Worrall BB, Kleindorfer D, Flaherty ML, Martini S, Mackey J, De Los Rios La Rosa F, Brown F, Broderick JP, Investigators FIAS (2012) Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX17 in disease risk. Stroke 43(11):2846–2852Google Scholar
  143. 143.
    Joshi G, Pradhan S, Mittal B (2011) Vascular gene polymorphisms (EDNRA -231 G > A and APOE HhaI) and risk for migraine. DNA Cell Biol 30(8):577–584Google Scholar
  144. 144.
    Lee S, Kim IK, Ahn JS, Woo DC, Kim ST, Song S, Koh GY, Kim HS, Jeon BH, Kim I (2015) Deficiency of endothelium-specific transcription factor Sox17 induces intracranial aneurysm. Circulation 131(11):995–1005Google Scholar
  145. 145.
    Leeper NJ, Raiesdana A, Kojima Y, Kundu RK, Cheng H, Maegdefessel L, Toh R, Ahn GO, Ali ZA, Anderson DR, Miller CL, Roberts SC, Spin JM, de Almeida PE, Wu JC, Xu B, Cheng K, Quertermous M, Kundu S, Kortekaas KE, Berzin E, Downing KP, Dalman RL, Tsao PS, Schadt EE, Owens GK, Quertermous T (2013) Loss of CDKN2B promotes p53-dependent smooth muscle cell apoptosis and aneurysm formation. Arterioscler Thromb Vasc Biol 33(1):e1–e10Google Scholar
  146. 146.
    Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA, Genomes Project, C (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073Google Scholar
  147. 147.
    Suzuki J, Takaku A (1969) Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol 20(3):288–299Google Scholar
  148. 148.
    Khan N, Takagi Y, Yonekawa Y (2017) Adult Moyamoya disease. In: Winn HR (ed) Youmans and Winn neurological surgery. Elsevier, Amsterdam, pp 3166–3174Google Scholar
  149. 149.
    Smith ER, Scott RM (2017) Moyamoya disease. In: Winn HR (ed) Youmans and Winn neurological surgery. Elsevier, Amsterdam, pp 1766–1772Google Scholar
  150. 150.
    Ahn IM, Park DH, Hann HJ, Kim KH, Kim HJ, Ahn HS (2014) Incidence, prevalence, and survival of moyamoya disease in Korea: a nationwide, population-based study. Stroke 45(4):1090–1095Google Scholar
  151. 151.
    Scott RM, Smith ER (2009) Moyamoya disease and moyamoya syndrome. N Engl J Med 360(12):1226–1237Google Scholar
  152. 152.
    Kraemer M, Heienbrok W, Berlit P (2008) Moyamoya disease in Europeans. Stroke 39(12):3193–3200Google Scholar
  153. 153.
    Suzuki J, Kodama N (1983) Moyamoya disease—a review. Stroke 14(1):104–109Google Scholar
  154. 154.
    Graham JF, Matoba A (1997) A survey of moyamoya disease in Hawaii. Clin Neurol Neurosurg 99(Suppl 2):S31–S35Google Scholar
  155. 155.
    Yamauchi T, Houkin K, Tada M, Abe H (1997) Familial occurrence of moyamoya disease. Clin Neurol Neurosurg 99(Suppl 2):S162–S167Google Scholar
  156. 156.
    Ikeda E (1991) Systemic vascular changes in spontaneous occlusion of the circle of Willis. Stroke 22(11):1358–1362Google Scholar
  157. 157.
    Mineharu Y, Takenaka K, Yamakawa H, Inoue K, Ikeda H, Kikuta KI, Takagi Y, Nozaki K, Hashimoto N, Koizumi A (2006) Inheritance pattern of familial moyamoya disease: autosomal dominant mode and genomic imprinting. J Neurol Neurosurg Psychiatry 77(9):1025–1029Google Scholar
  158. 158.
    Mineharu Y, Liu W, Inoue K, Matsuura N, Inoue S, Takenaka K, Ikeda H, Houkin K, Takagi Y, Kikuta K, Nozaki K, Hashimoto N, Koizumi A (2008) Autosomal dominant moyamoya disease maps to chromosome 17q25.3. Neurology 70(24 Pt 2):2357–2363Google Scholar
  159. 159.
    Kamada F, Aoki Y, Narisawa A, Abe Y, Komatsuzaki S, Kikuchi A, Kanno J, Niihori T, Ono M, Ishii N, Owada Y, Fujimura M, Mashimo Y, Suzuki Y, Hata A, Tsuchiya S, Tominaga T, Matsubara Y, Kure S (2011) A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet 56(1):34–40Google Scholar
  160. 160.
    Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H, Hitomi T, Hashikata H, Matsuura N, Yamazaki S, Toyoda A, Kikuta K, Takagi Y, Harada KH, Fujiyama A, Herzig R, Krischek B, Zou L, Kim JE, Kitakaze M, Miyamoto S, Nagata K, Hashimoto N, Koizumi A (2011) Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One 6(7):e22542Google Scholar
  161. 161.
    Moteki Y, Onda H, Kasuya H, Yoneyama T, Okada Y, Hirota K, Mukawa M, Nariai T, Mitani S, Akagawa H (2015) Systematic validation of RNF213 coding variants in Japanese patients with moyamoya disease. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.115.001862 Google Scholar
  162. 162.
    Kim EH, Yum MS, Ra YS, Park JB, Ahn JS, Kim GH, Goo HW, Ko TS, Yoo HW (2016) Importance of RNF213 polymorphism on clinical features and long-term outcome in moyamoya disease. J Neurosurg 124(5):1221–1227Google Scholar
  163. 163.
    Raso A , Biassoni R, Mascelli S, Nozza P, Ugolotti E, DI Marco E, DE Marco P, Merello E, Cama A, Pavanello M, Capra V (2016) Moyamoya vasculopathy shows a genetic mutational gradient decreasing from East to West. J Neurosurg SciGoogle Scholar
  164. 164.
    Ohkubo K, Sakai Y, Inoue H, Akamine S, Ishizaki Y, Matsushita Y, Sanefuji M, Torisu H, Ihara K, Sardiello M, Hara T (2015) Moyamoya disease susceptibility gene RNF213 links inflammatory and angiogenic signals in endothelial cells. Sci Rep 5:13191Google Scholar
  165. 165.
    Fukushima H, Takenouchi T, Kosaki K (2016) Homozygosity for moyamoya disease risk allele leads to moyamoya disease with extracranial systemic and pulmonary vasculopathy. Am J Med Genet A 170(9):2453–2456Google Scholar
  166. 166.
    Sonobe S, Fujimura M, Niizuma K, Nishijima Y, Ito A, Shimizu H, Kikuchi A, Arai-Ichinoi N, Kure S, Tominaga T (2014) Temporal profile of the vascular anatomy evaluated by 9.4-T magnetic resonance angiography and histopathological analysis in mice lacking RNF213: a susceptibility gene for moyamoya disease. Brain Res 1552:64–71Google Scholar
  167. 167.
    Herve D, Philippi A, Belbouab R, Zerah M, Chabrier S, Collardeau-Frachon S, Bergametti F, Essongue A, Berrou E, Krivosic V, Sainte-Rose C, Houdart E, Adam F, Billiemaz K, Lebret M, Roman S, Passemard S, Boulday G, Delaforge A, Guey S, Dray X, Chabriat H, Brouckaert P, Bryckaert M, Tournier-Lasserve E (2014) Loss of alpha1beta1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am J Hum Genet 94(3):385–394Google Scholar
  168. 168.
    Zabel U, Weeger M, La M, Schmidt HH (1998) Human soluble guanylate cyclase: functional expression and revised isoenzyme family. Biochem J 335(Pt 1):51–57Google Scholar
  169. 169.
    Herve D, Touraine P, Verloes A, Miskinyte S, Krivosic V, Logeart D, Alili N, Laredo JD, Gaudric A, Houdart E, Metzger JP, Tournier-Lasserve E, Woimant F (2010) A hereditary moyamoya syndrome with multisystemic manifestations. Neurology 75(3):259–264Google Scholar
  170. 170.
    Miskinyte S, Butler MG, Herve D, Sarret C, Nicolino M, Petralia JD, Bergametti F, Arnould M, Pham VN, Gore AV, Spengos K, Gazal S, Woimant F, Steinberg GK, Weinstein BM, Tournier-Lasserve E (2011) Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya. Am J Hum Genet 88(6):718–728Google Scholar
  171. 171.
    Inoue TK, Ikezaki K, Sasazuki T, Matsushima T, Fukui M (1997) Analysis of class II genes of human leukocyte antigen in patients with moyamoya disease. Clin Neurol Neurosurg 99(Suppl 2):S234–S237Google Scholar
  172. 172.
    Inoue TK, Ikezaki K, Sasazuki T, Matsushima T, Fukui M (2000) Linkage analysis of moyamoya disease on chromosome 6. J Child Neurol 15(3):179–182Google Scholar
  173. 173.
    Han H, Pyo CW, Yoo DS, Huh PW, Cho KS, Kim DS (2003) Associations of Moyamoya patients with HLA class I and class II alleles in the Korean population. J Korean Med Sci 18(6):876–880Google Scholar
  174. 174.
    Sakurai K, Horiuchi Y, Ikeda H, Ikezaki K, Yoshimoto T, Fukui M, Arinami T (2004) A novel susceptibility locus for moyamoya disease on chromosome 8q23. J Hum Genet 49(5):278–281Google Scholar
  175. 175.
    Roder C, Peters V, Kasuya H, Nishizawa T, Takehara Y, Berg D, Schulte C, Khan N, Tatagiba M, Krischek B (2010) Polymorphisms in TGFB1 and PDGFRB are associated with Moyamoya disease in European patients. Acta Neurochir (Wien) 152(12):2153–2160Google Scholar
  176. 176.
    Guey S, Grangeon L, Brunelle F, Bergametti F, Amiel J, Lyonnet S, Delaforge A, Arnould M, Desnous B, Bellesme C, Herve D, Schwitalla JC, Kraemer M, Tournier-Lasserve E, Kossorotoff M (2017) De novo mutations in CBL causing early-onset paediatric moyamoya angiopathy. J Med Genet 54(8):550–557Google Scholar
  177. 177.
    Mukawa M, Nariai T, Onda H, Yoneyama T, Aihara Y, Hirota K, Kudo T, Sumita K, Maehara T, Kawamata T, Kasuya H, Akagawa H (2017) Exome sequencing identified CCER2 as a novel candidate gene for Moyamoya disease. J Stroke Cerebrovasc Dis 26(1):150–161Google Scholar
  178. 178.
    Hamauchi S, Shichinohe H, Uchino H, Yamaguchi S, Nakayama N, Kazumata K, Osanai T, Abumiya T, Houkin K, Era T (2016) Cellular functions and gene and protein expression profiles in endothelial cells derived from Moyamoya disease-specific iPS Cells. PLoS One 11(9):e0163561Google Scholar
  179. 179.
    Wang W, Gao F, Zhao Z, Wang H, Zhang L, Zhang D, Zhang Y, Lan Q, Wang J, Zhao J (2017) Integrated analysis of LncRNA-mRNA co-expression profiles in patients with moyamoya disease. Sci Rep 7:42421Google Scholar
  180. 180.
    Gao F, Yu L, Zhang D, Zhang Y, Wang R, Zhao J (2016) Long noncoding RNAs and their regulatory network: potential therapeutic targets for adult moyamoya disease. World Neurosurg 93:111–119Google Scholar
  181. 181.
    Vinters HV, Zarow C, Borys E, Whitman JD, Tung S, Ellis WG, Zheng L, Chui HC (2018) Review: vascular dementia: clinicopathologic and genetic considerations. Neuropathol Appl Neurobiol 44(3):247–266Google Scholar
  182. 182.
    Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383(6602):707–710Google Scholar
  183. 183.
    Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, Ikeda M, Shiota H, Tamura M, Shimoe Y, Hirayama M, Arisato T, Yanagawa S, Tanaka A, Nakano I, Ikeda S, Yoshida Y, Yamamoto T, Ikeuchi T, Kuwano R, Nishizawa M, Tsuji S, Onodera O (2009) Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 360(17):1729–1739Google Scholar
  184. 184.
    Richards A, van den Maagdenberg AM, Jen JC, Kavanagh D, Bertram P, Spitzer D, Liszewski MK, Barilla-Labarca ML, Terwindt GM, Kasai Y, McLellan M, Grand MG, Vanmolkot KR, de Vries B, Wan J, Kane MJ, Mamsa H, Schafer R, Stam AH, Haan J, de Jong PT, Storimans CW, van Schooneveld MJ, Oosterhuis JA, Gschwendter A, Dichgans M, Kotschet KE, Hodgkinson S, Hardy TA, Delatycki MB, Hajj-Ali RA, Kothari PH, Nelson SF, Frants RR, Baloh RW, Ferrari MD, Atkinson JP (2007) C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39(9):1068–1070Google Scholar
  185. 185.
    Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, Bousser MG, Heutink P, Miner JH, Tournier-Lasserve E, John SW (2006) Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 354(14):1489–1496Google Scholar
  186. 186.
    Gilbert JJ, Vinters HV (1983) Cerebral amyloid angiopathy: incidence and complications in the aging brain. Cerebral hemorrhage. Stroke 14(6):915–923Google Scholar
  187. 187.
    Vinters HV, Gilbert JJ (1983) Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke 14(6):924–928Google Scholar
  188. 188.
    Kolar GR, Kothari PH, Khanlou N, Jen JC, Schmidt RE, Vinters HV (2014) Neuropathology and genetics of cerebroretinal vasculopathies. Brain Pathol 24(5):510–518Google Scholar
  189. 189.
    Sourander P, Walinder J (1977) Hereditary multi-infarct dementia. Morphological and clinical studies of a new disease. Acta Neuropathol 39(3):247–254Google Scholar
  190. 190.
    Sourander P, Walinder J (1977) Hereditary multi-infarct dementia. Lancet 1(8019):1015Google Scholar
  191. 191.
    Van Bogaert L (1955) Encephalopathie sous-corticale progressive (Binswanger): an evolution rapide chez deux soeurs. Med Hellen 24:961–972Google Scholar
  192. 192.
    Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG (2009) Cadasil. Lancet Neurol 8(7):643–653Google Scholar
  193. 193.
    Moreton FC, Razvi SS, Davidson R, Muir KW (2014) Changing clinical patterns and increasing prevalence in CADASIL. Acta Neurol Scand 130(3):197–203Google Scholar
  194. 194.
    Tikka S, Baumann M, Siitonen M, Pasanen P, Poyhonen M, Myllykangas L, Viitanen M, Fukutake T, Cognat E, Joutel A, Kalimo H (2014) CADASIL and CARASIL. Brain Pathol 24(5):525–544Google Scholar
  195. 195.
    Tournier-Lasserve E, Joutel A, Melki J, Weissenbach J, Lathrop GM, Chabriat H, Mas JL, Cabanis EA, Baudrimont M, Maciazek J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3(3):256–259Google Scholar
  196. 196.
    Adib-Samii P, Brice G, Martin RJ, Markus HS (2010) Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke 41(4):630–634Google Scholar
  197. 197.
    Opherk C, Peters N, Herzog J, Luedtke R, Dichgans M (2004) Long-term prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain 127(Pt 11):2533–2539Google Scholar
  198. 198.
    Rutten JW, Dauwerse HG, Gravesteijn G, van Belzen MJ, van der Grond J, Polke JM, Bernal-Quiros M, Lesnik Oberstein SA (2016) Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol 3(11):844–853Google Scholar
  199. 199.
    Narayan SK, Gorman G, Kalaria RN, Ford GA, Chinnery PF (2012) The minimum prevalence of CADASIL in northeast England. Neurology 78(13):1025–1027Google Scholar
  200. 200.
    Razvi SS, Davidson R, Bone I, Muir KW (2005) The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 76(5):739–741Google Scholar
  201. 201.
    Joutel A, Dodick DD, Parisi JE, Cecillon M, Tournier-Lasserve E, Bousser MG (2000) De novo mutation in the Notch3 gene causing CADASIL. Ann Neurol 47(3):388–391Google Scholar
  202. 202.
    Coto E, Menendez M, Navarro R, Garcia-Castro M, Alvarez V (2006) A new de novo Notch3 mutation causing CADASIL. Eur J Neurol 13(6):628–631Google Scholar
  203. 203.
    Tuominen S, Juvonen V, Amberla K, Jolma T, Rinne JO, Tuisku S, Kurki T, Marttila R, Poyhonen M, Savontaus ML, Viitanen M, Kalimo H (2001) Phenotype of a homozygous CADASIL patient in comparison to 9 age-matched heterozygous patients with the same R133C Notch3 mutation. Stroke 32(8):1767–1774Google Scholar
  204. 204.
    Liem MK, Lesnik Oberstein SA, Vollebregt MJ, Middelkoop HA, van der Grond J, Helderman-van den Enden AT (2008) Homozygosity for a NOTCH3 mutation in a 65-year-old CADASIL patient with mild symptoms: a family report. J Neurol 255(12):1978–1980Google Scholar
  205. 205.
    Ragno M, Pianese L, Morroni M, Cacchio G, Manca A, Di Marzio F, Silvestri S, Miceli C, Scarcella M, Onofrj M, Trojano L (2013) “CADASIL coma” in an Italian homozygous CADASIL patient: comparison with clinical and MRI findings in age-matched heterozygous patients with the same G528C NOTCH3 mutation. Neurol Sci 34(11):1947–1953Google Scholar
  206. 206.
    Soong BW, Liao YC, Tu PH, Tsai PC, Lee IH, Chung CP, Lee YC (2013) A homozygous NOTCH3 mutation p.R544C and a heterozygous TREX1 variant p.C99MfsX3 in a family with hereditary small vessel disease of the brain. J Chin Med Assoc 76(6):319–324Google Scholar
  207. 207.
    Vinciguerra C, Rufa A, Bianchi S, Sperduto A, De Santis M, Malandrini A, Dotti MT, Federico A (2014) Homozygosity and severity of phenotypic presentation in a CADASIL family. Neurol Sci 35(1):91–93Google Scholar
  208. 208.
    Yamamoto Y, Craggs L, Baumann M, Kalimo H, Kalaria RN (2011) Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol Appl Neurobiol 37(1):94–113Google Scholar
  209. 209.
    Fouillade C, Monet-Lepretre M, Baron-Menguy C, Joutel A (2012) Notch signaling in smooth muscle cells during development and disease. Cardiovasc Res 95:138–146Google Scholar
  210. 210.
    Dziewulska D, Lewandowska E (2012) Pericytes as a new target for pathological processes in CADASIL. Neuropathology 32:515–521Google Scholar
  211. 211.
    Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N (2015) Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol 78(6):887–900Google Scholar
  212. 212.
    Baudrimont M, Dubas F, Joutel A, Tournier-Lasserve E, Bousser MG (1993) Autosomal dominant leukoencephalopathy and subcortical ischemic stroke. A clinicopathological study. Stroke 24(1):122–125Google Scholar
  213. 213.
    Ruchoux MM, Guerouaou D, Vandenhaute B, Pruvo JP, Vermersch P, Leys D (1995) Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol (Berl) 89(6):500–512Google Scholar
  214. 214.
    Tikka S, Mykkanen K, Ruchoux MM, Bergholm R, Junna M, Poyhonen M, Yki-Jarvinen H, Joutel A, Viitanen M, Baumann M, Kalimo H (2009) Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain J Neurol 132(Pt 4):933–939Google Scholar
  215. 215.
    Lewandowska E, Dziewulska D, Parys M, Pasennik E (2011) Ultrastructure of granular osmiophilic material deposits (GOM) in arterioles of CADASIL patients. Folia Neuropathol 49(3):174–180Google Scholar
  216. 216.
    Ishiko A, Shimizu A, Nagata E, Takahashi K, Tabira T, Suzuki N (2006) Notch3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol 112(3):333–339Google Scholar
  217. 217.
    Yamamoto Y, Craggs LJ, Watanabe A, Booth T, Attems J, Low RW, Oakley AE, Kalaria RN (2013) Brain microvascular accumulation and distribution of the NOTCH3 ectodomain and granular osmiophilic material in CADASIL. J Neuropathol Exp Neurol 72(5):416–431Google Scholar
  218. 218.
    Monet-Lepretre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V, Dussaule C, Cognat E, Vinh J, Joutel A (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136(Pt 6):1830–1845Google Scholar
  219. 219.
    Arboleda-Velasquez JF, Manent J, Lee JH, Tikka S, Ospina C, Vanderburg CR, Frosch MP, Rodriguez-Falcon M, Villen J, Gygi S, Lopera F, Kalimo H, Moskowitz MA, Ayata C, Louvi A, Artavanis-Tsakonas S (2011) Hypomorphic notch 3 alleles link notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci USA 108(21):E128–E135Google Scholar
  220. 220.
    Kast J, Hanecker P, Beaufort N, Giese A, Joutel A, Dichgans M, Opherk C, Haffner C (2014) Sequestration of latent TGF-beta binding protein 1 into CADASIL-related Notch3-ECD deposits. Acta Neuropathol Commun 2:96Google Scholar
  221. 221.
    Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126(Pt 10):2135–2140Google Scholar
  222. 222.
    Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssiere C, Cruaud C, Maciazek J, Weissenbach J, Bousser MG, Bach JF, Tournier-Lasserve E (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350(9090):1511–1515Google Scholar
  223. 223.
    Mizuno T, Muranishi M, Torugun T, Tango H, Nagakane Y, Kudeken T, Kawase Y, Kawabe K, Oshima F, Yaoi T, Itoh K, Fushiki S, Nakagawa M (2008) Two Japanese CADASIL families exhibiting Notch3 mutation R75P not involving cysteine residue. Intern Med 47(23):2067–2072Google Scholar
  224. 224.
    Muino E, Gallego-Fabrega C, Cullell N, Carrera C, Torres N, Krupinski J, Roquer J, Montaner J, Fernandez-Cadenas I (2017) Systematic review of cysteine-sparing NOTCH3 missense mutations in patients with clinical suspicion of CADASIL. Int J Mol Sci.  https://doi.org/10.3390/ijms18091964 Google Scholar
  225. 225.
    Lundkvist J, Zhu S, Hansson EM, Schweinhardt P, Miao Q, Beatus P, Dannaeus K, Karlstrom H, Johansson CB, Viitanen M, Rozell B, Spenger C, Mohammed A, Kalimo H, Lendahl U (2005) Mice carrying a R142C Notch 3 knock-in mutation do not develop a CADASIL-like phenotype. Genesis 41(1):13–22Google Scholar
  226. 226.
    Wallays G, Nuyens D, Silasi-Mansat R, Souffreau J, Callaerts-Vegh Z, Van Nuffelen A, Moons L, D’Hooge R, Lupu F, Carmeliet P, Collen D, Dewerchin M (2011) Notch3 Arg170Cys knock-in mice display pathologic and clinical features of the neurovascular disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Arterioscler Thromb Vasc Biol 31(12):2881–2888Google Scholar
  227. 227.
    Joutel A, Monet-Lepretre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, Lemaire-Carrette B, Domenga V, Schedl A, Lacombe P, Hubner N (2010) Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Investig 120(2):433–445Google Scholar
  228. 228.
    Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C, Gridley T, Tournier-Lasserve E, Cohen-Tannoudji M, Joutel A (2007) The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet 16(8):982–992Google Scholar
  229. 229.
    Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, Tournier-Lasserve E, Cohen-Tannoudji M, Chabriat H, Joutel A (2009) Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain J Neurol 132(Pt 6):1601–1612Google Scholar
  230. 230.
    Machuca-Parra AI, Bigger-Allen AA, Sanchez AV, Boutabla A, Cardona-Velez J, Amarnani D, Saint-Geniez M, Siebel CW, Kim LA, D’Amore PA, Arboleda-Velasquez JF (2017) Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL. J Exp Med 214(8):2271–2282Google Scholar
  231. 231.
    Fukutake T (2011) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis 20(2):85–93Google Scholar
  232. 232.
    Nozaki H, Nishizawa M, Onodera O (2014) Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 45(11):3447–3453Google Scholar
  233. 233.
    Verdura E, Herve D, Scharrer E, Amador Mdel M, Guyant-Marechal L, Philippi A, Corlobe A, Bergametti F, Gazal S, Prieto-Morin C, Beaufort N, Le Bail B, Viakhireva I, Dichgans M, Chabriat H, Haffner C, Tournier-Lasserve E (2015) Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease. Brain 138(Pt 8):2347–2358Google Scholar
  234. 234.
    Vinters HV (1987) Cerebral amyloid angiopathy. A critical review. Stroke 18(2):311–324Google Scholar
  235. 235.
    Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A, Frangione B, Holton JL (2003) Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol 62(9):885–898Google Scholar
  236. 236.
    Biffi A, Greenberg SM (2011) Cerebral amyloid angiopathy: a systematic review. J Clin Neurol 7(1):1–9Google Scholar
  237. 237.
    Viswanathan A, Greenberg SM (2011) Cerebral amyloid angiopathy in the elderly. Ann Neurol 70(6):871–880Google Scholar
  238. 238.
    Brenowitz WD, Nelson PT, Besser LM, Heller KB, Kukull WA (2015) Cerebral amyloid angiopathy and its co-occurrence with Alzheimer’s disease and other cerebrovascular neuropathologic changes. Neurobiol Aging 36(10):2702–2708Google Scholar
  239. 239.
    Smith EE (2018) Cerebral amyloid angiopathy as a cause of neurodegeneration. J Neurochem 144(5):651–658Google Scholar
  240. 240.
    Vinters HV (2015) Emerging concepts in Alzheimer’s disease. Annu Rev Pathol 10:291–319Google Scholar
  241. 241.
    Greenberg SM, Vonsattel JP (1997) Diagnosis of cerebral amyloid angiopathy. Sensitivity and specificity of cortical biopsy. Stroke 28(7):1418–1422Google Scholar
  242. 242.
    Nicoll JA, Yamada M, Frackowiak J, Mazur-Kolecka B, Weller RO (2004) Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer’s disease. Pro-CAA position statement. Neurobiol Aging 25(5):589–597 (discussion 603-4) Google Scholar
  243. 243.
    Chalmers K, Wilcock GK, Love S (2003) APOE epsilon 4 influences the pathological phenotype of Alzheimer’s disease by favouring cerebrovascular over parenchymal accumulation of A beta protein. Neuropathol Appl Neurobiol 29(3):231–238Google Scholar
  244. 244.
    Premkumar DR, Cohen DL, Hedera P, Friedland RP, Kalaria RN (1996) Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease. Am J Pathol 148(6):2083–2095Google Scholar
  245. 245.
    Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38(1):24–26Google Scholar
  246. 246.
    Revesz T, Holton JL, Lashley T, Plant G, Frangione B, Rostagno A, Ghiso J (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118(1):115–130Google Scholar
  247. 247.
    De Jonghe C, Zehr C, Yager D, Prada CM, Younkin S, Hendriks L, Van Broeckhoven C, Eckman CB (1998) Flemish and Dutch mutations in amyloid beta precursor protein have different effects on amyloid beta secretion. Neurobiol Dis 5(4):281–286Google Scholar
  248. 248.
    Basun H, Bogdanovic N, Ingelsson M, Almkvist O, Naslund J, Axelman K, Bird TD, Nochlin D, Schellenberg GD, Wahlund LO, Lannfelt L (2008) Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease. Arch Neurol 65(4):499–505Google Scholar
  249. 249.
    Ghiso J, Jensson O, Frangione B (1986) Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of gamma-trace basic protein (cystatin C). Proc Natl Acad Sci USA 83(9):2974–2978Google Scholar
  250. 250.
    Brett M, Persey MR, Reilly MM, Revesz T, Booth DR, Booth SE, Hawkins PN, Pepys MB, Morgan-Hughes JA (1999) Transthyretin Leu12Pro is associated with systemic, neuropathic and leptomeningeal amyloidosis. Brain 122(Pt 2):183–190Google Scholar
  251. 251.
    Ghiso J, Haltia M, Prelli F, Novello J, Frangione B (1990) Gelsolin variant (Asn-187) in familial amyloidosis, Finnish type. Biochem J 272(3):827–830Google Scholar
  252. 252.
    Herzig MC, Van Nostrand WE, Jucker M (2006) Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 16(1):40–54Google Scholar
  253. 253.
    Vidal R, Barbeito AG, Miravalle L, Ghetti B (2009) Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2. Brain Pathol 19(1):58–68Google Scholar
  254. 254.
    Stam AH, Kothari PH, Shaikh A, Gschwendter A, Jen JC, Hodgkinson S, Hardy TA, Hayes M, Kempster PA, Kotschet KE, Bajema IM, van Duinen SG, Maat-Schieman MLC, de Jong P, de Smet MD, de Wolff-Rouendaal D, Dijkman G, Pelzer N, Kolar GR, Schmidt RE, Lacey J, Joseph D, Fintak DR, Grand MG, Brunt EM, Liapis H, Hajj-Ali RA, Kruit MC, van Buchem MA, Dichgans M, Frants RR, van den Maagdenberg A, Haan J, Baloh RW, Atkinson JP, Terwindt GM, Ferrari MD (2016) Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain 139(11):2909–2922Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departments of Neurosurgery and Neuroscience, Program on NeurogeneticsYale School of MedicineNew HavenUSA

Personalised recommendations