Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 1, pp 89–98 | Cite as

Dynamics and mechanisms of posterior axis elongation in the vertebrate embryo

  • Bertrand BénazérafEmail author
Review

Abstract

During development, the vertebrate embryo undergoes significant morphological changes which lead to its future body form and functioning organs. One of these noticeable changes is the extension of the body shape along the antero-posterior (A–P) axis. This A–P extension, while taking place in multiple embryonic tissues of the vertebrate body, involves the same basic cellular behaviors: cell proliferation, cell migration (of new progenitors from a posterior stem zone), and cell rearrangements. However, the nature and the relative contribution of these different cellular behaviors to A–P extension appear to vary depending upon the tissue in which they take place and on the stage of embryonic development. By focusing on what is known in the neural and mesodermal tissues of the bird embryo, I review the influences of cellular behaviors in posterior tissue extension. In this context, I discuss how changes in distinct cell behaviors can be coordinated at the tissue level (and between tissues) to synergize, build, and elongate the posterior part of the embryonic body. This multi-tissue framework does not only concern axis elongation, as it could also be generalized to morphogenesis of any developing organs.

Keywords

Live imaging Bird embryo Axis elongation Proliferation PSM Multi-tissue Tissue deformations Morphogenesis 

Notes

Acknowledgements

The author thanks Rusty Lansford, David Huss, Cathy Soula, Eric Theveneau, Ben Steventon, Daniela Roellig and Octavian Voiculescu for reading and giving critical comments on the manuscript.

References

  1. 1.
    Keller RE, Danilchik M, Gimlich R, Shih J (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J Embryol Exp Morphol 89(Suppl):185–209PubMedGoogle Scholar
  2. 2.
    Keller R, Davidson L, Edlund A et al (2000) Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 355:897–922.  https://doi.org/10.1098/rstb.2000.0626 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shindo A (2018) Models of convergent extension during morphogenesis. Wiley Interdiscip Rev Dev Biol.  https://doi.org/10.1002/wdev.293 CrossRefPubMedGoogle Scholar
  4. 4.
    Beck CW (2015) Development of the vertebrate tailbud. Wiley Interdiscip Rev Dev Biol 4:33–44.  https://doi.org/10.1002/wdev.163 CrossRefPubMedGoogle Scholar
  5. 5.
    Griffith CM, Wiley MJ, Sanders EJ (1992) The vertebrate tail bud: three germ layers from one tissue. Anat Embryol (Berl) 185:101–113CrossRefGoogle Scholar
  6. 6.
    Takada S, Stark KL, Shea MJ et al (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8:174–189.  https://doi.org/10.1101/gad.8.2.174 CrossRefPubMedGoogle Scholar
  7. 7.
    Bertrand N, Médevielle F, Pituello F (2000) FGF signalling controls the timing of Pax6 activation in the neural tube. Development 127:4837–4843PubMedGoogle Scholar
  8. 8.
    Diez del Corral R, Olivera-Martinez I, Goriely A et al (2003) Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40:65–79CrossRefGoogle Scholar
  9. 9.
    Dubrulle J, McGrew MJ, Pourquié O (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106:219–232CrossRefGoogle Scholar
  10. 10.
    Wilson L, Maden M (2005) The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev Biol 282:1–13.  https://doi.org/10.1016/j.ydbio.2005.02.027 CrossRefPubMedGoogle Scholar
  11. 11.
    Hubaud A, Pourquié O (2014) Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol 15:709–721.  https://doi.org/10.1038/nrm3891 CrossRefPubMedGoogle Scholar
  12. 12.
    Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92.  https://doi.org/10.1002/jmor.1050880104 CrossRefPubMedGoogle Scholar
  13. 13.
    Patten I, Kulesa P, Shen MM et al (2003) Distinct modes of floor plate induction in the chick embryo. Development 130:4809–4821.  https://doi.org/10.1242/dev.00694 CrossRefPubMedGoogle Scholar
  14. 14.
    Catala M, Teillet MA, De Robertis EM, Le Douarin ML (1996) A spinal cord fate map in the avian embryo: while regressing, Hensen’s node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 122:2599–2610PubMedGoogle Scholar
  15. 15.
    Selleck MA, Stern CD (1991) Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. Development 112:615–626PubMedGoogle Scholar
  16. 16.
    Hatada Y, Stern CD (1994) A fate map of the epiblast of the early chick embryo. Development 120:2879–2889PubMedGoogle Scholar
  17. 17.
    Brown JM, Storey KG (2000) A region of the vertebrate neural plate in which neighbouring cells can adopt neural or epidermal fates. Curr Biol 10:869–872CrossRefGoogle Scholar
  18. 18.
    Iimura T, Yang X, Weijer CJ, Pourquié O (2007) Dual mode of paraxial mesoderm formation during chick gastrulation. Proc Natl Acad Sci USA 104:2744–2749.  https://doi.org/10.1073/pnas.0610997104 CrossRefPubMedGoogle Scholar
  19. 19.
    Psychoyos D, Stern CD (1996) Fates and migratory routes of primitive streak cells in the chick embryo. Development 122:1523–1534PubMedGoogle Scholar
  20. 20.
    Catala M, Teillet MA, Le Douarin NM (1995) Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech Dev 51:51–65CrossRefGoogle Scholar
  21. 21.
    Cambray N, Wilson V (2007) Two distinct sources for a population of maturing axial progenitors. Development 134:2829–2840.  https://doi.org/10.1242/dev.02877 CrossRefPubMedGoogle Scholar
  22. 22.
    McGrew MJ, Sherman A, Lillico SG et al (2008) Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135:2289–2299.  https://doi.org/10.1242/dev.022020 CrossRefPubMedGoogle Scholar
  23. 23.
    Knezevic V, De Santo R, Mackem S (1998) Continuing organizer function during chick tail development. Development 125:1791–1801PubMedGoogle Scholar
  24. 24.
    Iimura T, Pourquié O (2008) Manipulation and electroporation of the avian segmental plate and somites in vitro. Methods Cell Biol 87:257–270.  https://doi.org/10.1016/S0091-679X(08)00213-6 CrossRefPubMedGoogle Scholar
  25. 25.
    Rupp PA, Rongish BJ, Czirok A, Little CD (2003) Culturing of avian embryos for time-lapse imaging. Biotechniques 34:274–278CrossRefGoogle Scholar
  26. 26.
    Chapman SC, Collignon J, Schoenwolf GC, Lumsden A (2001) Improved method for chick whole-embryo culture using a filter paper carrier. Dev Dyn 220:284–289.  https://doi.org/10.1002/1097-0177(20010301)220:3%3c284:AID-DVDY1102%3e3.0.CO;2-5 CrossRefPubMedGoogle Scholar
  27. 27.
    Yang X, Dormann D, Münsterberg AE, Weijer CJ (2002) Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev Cell 3:425–437CrossRefGoogle Scholar
  28. 28.
    Mathis L, Kulesa PM, Fraser SE (2001) FGF receptor signalling is required to maintain neural progenitors during Hensen’s node progression. Nat Cell Biol 3:559–566.  https://doi.org/10.1038/35078535 CrossRefPubMedGoogle Scholar
  29. 29.
    Sweetman D, Wagstaff L, Cooper O et al (2008) The migration of paraxial and lateral plate mesoderm cells emerging from the late primitive streak is controlled by different Wnt signals. BMC Dev Biol 8:63.  https://doi.org/10.1186/1471-213X-8-63 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ciruna B, Rossant J (2001) FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1:37–49.  https://doi.org/10.1016/S1534-5807(01)00017-X CrossRefPubMedGoogle Scholar
  31. 31.
    Iimura T, Pourquié O (2006) Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature 442:568–571.  https://doi.org/10.1038/nature04838 CrossRefPubMedGoogle Scholar
  32. 32.
    Denans N, Iimura T, Pourquié O (2015) Hox genes control vertebrate body elongation by collinear Wnt repression. Elife.  https://doi.org/10.7554/eLife.04379 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wacker SA, McNulty CL, Durston AJ (2004) The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP-4. Dev Biol 266:123–137.  https://doi.org/10.1016/j.ydbio.2003.10.011 CrossRefPubMedGoogle Scholar
  34. 34.
    Mallo M, Wellik DM, Deschamps J (2010) Hox genes and regional patterning of the vertebrate body plan. Dev Biol 344:7–15.  https://doi.org/10.1016/j.ydbio.2010.04.024 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Deschamps J, Duboule D (2017) Embryonic timing, axial stem cells, chromatin dynamics, and the Hox clock. Genes Dev 31:1406–1416.  https://doi.org/10.1101/gad.303123.117 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brown JM, Storey KG (2000) A region of the vertebrate neural plate in which neighbouring cells can adopt neural or epidermal fates. Curr Biol 10:869–872CrossRefGoogle Scholar
  37. 37.
    Martin BL, Kimelman D (2012) Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev Cell 22:223–232.  https://doi.org/10.1016/j.devcel.2011.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cambray N, Wilson V (2002) Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development 129:4855–4866PubMedGoogle Scholar
  39. 39.
    Tzouanacou E, Wegener A, Wymeersch FJ et al (2009) Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 17:365–376.  https://doi.org/10.1016/j.devcel.2009.08.002 CrossRefPubMedGoogle Scholar
  40. 40.
    Beddington RS, Rashbass P, Wilson V (1992) Brachyury–a gene affecting mouse gastrulation and early organogenesis. Development 116:157–165Google Scholar
  41. 41.
    Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765.  https://doi.org/10.1016/S0896-6273(03)00497-5 CrossRefGoogle Scholar
  42. 42.
    Olivera-Martinez I, Harada H, Halley PA, Storey KG (2012) Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation. PLoS Biol 10:e1001415.  https://doi.org/10.1371/journal.pbio.1001415 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wymeersch FJ, Huang Y, Blin G et al (2016) Position-dependent plasticity of distinct progenitor types in the primitive streak. Elife 5:e10042.  https://doi.org/10.7554/eLife.10042 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Aires R, Jurberg AD, Leal F et al (2016) Oct4 is a key regulator of vertebrate trunk length diversity. Dev Cell 38:262–274.  https://doi.org/10.1016/j.devcel.2016.06.021 CrossRefPubMedGoogle Scholar
  45. 45.
    Gouti M, Delile J, Stamataki D et al (2017) A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev Cell 41(243–261):e7.  https://doi.org/10.1016/j.devcel.2017.04.002 CrossRefGoogle Scholar
  46. 46.
    Koch F, Scholze M, Wittler L et al (2017) Antagonistic activities of Sox2 and brachyury control the fate choice of neuro-mesodermal progenitors. Dev Cell 42(514–526):e7.  https://doi.org/10.1016/j.devcel.2017.07.021 CrossRefGoogle Scholar
  47. 47.
    Amin S, Neijts R, Simmini S et al (2016) Cdx and T brachyury co-activate growth signaling in the embryonic axial progenitor niche. Cell Rep 17:3165–3177.  https://doi.org/10.1016/j.celrep.2016.11.069 CrossRefPubMedGoogle Scholar
  48. 48.
    Oginuma M, Moncuquet P, Xiong F et al (2017) A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev Cell 40(342–353):e10.  https://doi.org/10.1016/j.devcel.2017.02.001 CrossRefGoogle Scholar
  49. 49.
    Takemoto T, Uchikawa M, Yoshida M et al (2011) Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470:394–398.  https://doi.org/10.1038/nature09729 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Goto H, Kimmey SC, Row RH et al (2017) FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step epithelial to mesenchymal transition. Development 144:1412–1424.  https://doi.org/10.1242/dev.143578 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Akai J, Halley PA, Storey KG (2005) FGF-dependent Notch signaling maintains the spinal cord stem zone. Genes Dev 19:2877–2887.  https://doi.org/10.1101/gad.357705 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Glickman NS, Kimmel CB, Jones MA, Adams RJ (2003) Shaping the zebrafish notochord. Development 130:873–887CrossRefGoogle Scholar
  53. 53.
    Keller R, Cooper MS, Danilchik M et al (1989) Cell intercalation during notochord development in Xenopus laevis. J Exp Zool 251:134–154.  https://doi.org/10.1002/jez.1402510204 CrossRefPubMedGoogle Scholar
  54. 54.
    Ellis K, Bagwell J, Bagnat M (2013) Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. J Cell Biol 200:667–679.  https://doi.org/10.1083/jcb.201212095 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Adams DS, Keller R, Koehl MA (1990) The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development 110:115–130PubMedGoogle Scholar
  56. 56.
    Catala M, Teillet MA, Le Douarin NM (1995) Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech Dev 51:51–65CrossRefGoogle Scholar
  57. 57.
    Sausedo RA, Schoenwolf GC (1994) Quantitative analyses of cell behaviors underlying notochord formation and extension in mouse embryos. Anat Rec 239:103–112.  https://doi.org/10.1002/ar.1092390112 CrossRefPubMedGoogle Scholar
  58. 58.
    Sausedo RA, Schoenwolf GC (1993) Cell behaviors underlying notochord formation and extension in avian embryos: quantitative and immunocytochemical studies. Anat Rec 237:58–70.  https://doi.org/10.1002/ar.1092370107 CrossRefPubMedGoogle Scholar
  59. 59.
    Schoenwolf GC (2018) Contributions of the chick embryo and experimental embryology to understanding the cellular mechanisms of neurulation. Int J Dev Biol 62:49–55.  https://doi.org/10.1387/ijdb.170288gs CrossRefPubMedGoogle Scholar
  60. 60.
    Schoenwolf GC (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169:361–376.  https://doi.org/10.1002/aja.1001690402 CrossRefPubMedGoogle Scholar
  61. 61.
    Schoenwolf GC, Delongo J (1980) Ultrastructure of secondary neurulation in the chick embryo. Am J Anat 158:43–63.  https://doi.org/10.1002/aja.1001580106 CrossRefPubMedGoogle Scholar
  62. 62.
    Dady A, Havis E, Escriou V et al (2014) Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34:13208–13221.  https://doi.org/10.1523/JNEUROSCI.1850-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Schoenwolf GC (1985) Shaping and bending of the avian neuroepithelium: morphometric analyses. Dev Biol 109:127–139CrossRefGoogle Scholar
  64. 64.
    Nishimura T, Honda H, Takeichi M (2012) Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149:1084–1097.  https://doi.org/10.1016/j.cell.2012.04.021 CrossRefPubMedGoogle Scholar
  65. 65.
    López-Escobar B, Caro-Vega JM, Vijayraghavan DS et al (2018) The non-canonical Wnt-PCP pathway shapes the mouse caudal neural plate. Development.  https://doi.org/10.1242/dev.157487 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Roszko I, Faure P, Mathis L (2007) Stem cell growth becomes predominant while neural plate progenitor pool decreases during spinal cord elongation. Dev Biol 304:232–245.  https://doi.org/10.1016/j.ydbio.2006.12.050 CrossRefPubMedGoogle Scholar
  67. 67.
    Sausedo RA, Smith JL, Schoenwolf GC (1997) Role of nonrandomly oriented cell division in shaping and bending of the neural plate. J Comp Neurol 381:473–488.  https://doi.org/10.1002/(SICI)1096-9861(19970519)381:4%3c473:AID-CNE7%3e3.0.CO;2-%23 CrossRefPubMedGoogle Scholar
  68. 68.
    Ciruna B, Jenny A, Lee D et al (2006) Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 439:220–224.  https://doi.org/10.1038/nature04375 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Shimokita E, Takahashi Y (2011) Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Dev Growth Differ 53:401–410.  https://doi.org/10.1111/j.1440-169X.2011.01260.x CrossRefPubMedGoogle Scholar
  70. 70.
    Le Douarin NM, Teillet MA, Catala M (1998) Neurulation in amniote vertebrates: a novel view deduced from the use of quail-chick chimeras. Int J Dev Biol 42:909–916PubMedGoogle Scholar
  71. 71.
    Chal J, Pourquié O (2009) Patterning and differentiation of the vertebrate spine. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  72. 72.
    Yin C, Kiskowski M, Pouille P-A et al (2008) Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J Cell Biol 180:221–232.  https://doi.org/10.1083/jcb.200704150 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Yen WW, Williams M, Periasamy A et al (2009) PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation. Development 136:2039–2048.  https://doi.org/10.1242/dev.030601 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bénazéraf B, Francois P, Baker RE et al (2010) A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature 466:248–252.  https://doi.org/10.1038/nature09151 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Delfini M-C, Dubrulle J, Malapert P et al (2005) Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc Natl Acad Sci USA 102:11343–11348.  https://doi.org/10.1073/pnas.0502933102 CrossRefPubMedGoogle Scholar
  76. 76.
    Kulesa PM, Fraser SE (2002) Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 298:991–995.  https://doi.org/10.1126/science.1075544 CrossRefPubMedGoogle Scholar
  77. 77.
    Stern CD, Fraser SE, Keynes RJ, Primmett DR (1988) A cell lineage analysis of segmentation in the chick embryo. Development 104(Suppl):231–244PubMedGoogle Scholar
  78. 78.
    Lawton AK, Nandi A, Stulberg MJ et al (2013) Regulated tissue fluidity steers zebrafish body elongation. Development 140:573–582.  https://doi.org/10.1242/dev.090381 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Das D, Chatti V, Emonet T, Holley SA (2017) Patterned disordered cell motion ensures vertebral column symmetry. Dev Cell 42(170–180):e5.  https://doi.org/10.1016/j.devcel.2017.06.020 CrossRefGoogle Scholar
  80. 80.
    Bénazéraf B, Beaupeux M, Tchernookov M et al (2017) Multi-scale quantification of tissue behavior during amniote embryo axis elongation. Development 144:4462–4472.  https://doi.org/10.1242/dev.150557 CrossRefPubMedGoogle Scholar
  81. 81.
    Wilson PA, Oster G, Keller R (1989) Cell rearrangement and segmentation in Xenopus: direct observation of cultured explants. Development 105:155–166PubMedGoogle Scholar
  82. 82.
    Steventon B, Duarte F, Lagadec R et al (2016) Species-specific contribution of volumetric growth and tissue convergence to posterior body elongation in vertebrates. Development 143:1732–1741.  https://doi.org/10.1242/dev.126375 CrossRefPubMedGoogle Scholar
  83. 83.
    Huss D, Benazeraf B, Wallingford A et al (2015) A transgenic quail model that enables dynamic imaging of amniote embryogenesis. Development 142:2850–2859.  https://doi.org/10.1242/dev.121392 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Schoenwolf GC, Yuan S (1995) Experimental analyses of the rearrangement of ectodermal cells during gastrulation and neurulation in avian embryos. Cell Tissue Res 280:243–251CrossRefGoogle Scholar
  85. 85.
    Smith JL, Schoenwolf GC (1989) Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. J Exp Zool 250:49–62.  https://doi.org/10.1002/jez.1402500107 CrossRefPubMedGoogle Scholar
  86. 86.
    Psychoyos D, Stern CD (1996) Restoration of the organizer after radical ablation of Hensen’s node and the anterior primitive streak in the chick embryo. Development 122:3263–3273PubMedGoogle Scholar
  87. 87.
    Charrier J-B, Catala M, Lapointe F et al (2005) Cellular dynamics and molecular control of the development of organizer-derived cells in quail-chick chimeras. Int J Dev Biol 49:181–191.  https://doi.org/10.1387/ijdb.041962jc CrossRefPubMedGoogle Scholar
  88. 88.
    Charrier JB, Teillet MA, Lapointe F, Le Douarin NM (1999) Defining subregions of Hensen’s node essential for caudalward movement, midline development and cell survival. Development 126:4771–4783PubMedGoogle Scholar
  89. 89.
    van Nes J, de Graaff W, Lebrin F et al (2006) The Cdx4 mutation affects axial development and reveals an essential role of Cdx genes in the ontogenesis of the placental labyrinth in mice. Development 133:419–428.  https://doi.org/10.1242/dev.02216 CrossRefPubMedGoogle Scholar
  90. 90.
    Takada S, Stark KL, Shea MJ et al (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8:174–189.  https://doi.org/10.1101/gad.8.2.174 CrossRefPubMedGoogle Scholar
  91. 91.
    Herrmann BG, Labeit S, Poustka A et al (1990) Cloning of the T gene required in mesoderm formation in the mouse. Nature 343:617–622.  https://doi.org/10.1038/343617a0 CrossRefPubMedGoogle Scholar
  92. 92.
    Duband JL, Dufour S, Hatta K et al (1987) Adhesion molecules during somitogenesis in the avian embryo. J Cell Biol 104:1361–1374CrossRefGoogle Scholar
  93. 93.
    Zamir EA, Czirók A, Cui C et al (2006) Mesodermal cell displacements during avian gastrulation are due to both individual cell-autonomous and convective tissue movements. Proc Natl Acad Sci USA 103:19806–19811.  https://doi.org/10.1073/pnas.0606100103 CrossRefPubMedGoogle Scholar
  94. 94.
    Filla MB, Czirók A, Zamir EA et al (2004) Dynamic imaging of cell, extracellular matrix, and tissue movements during avian vertebral axis patterning. Birth Defects Res C Embryo Today 72:267–276.  https://doi.org/10.1002/bdrc.20020 CrossRefPubMedGoogle Scholar
  95. 95.
    Czirók A, Rongish BJ, Little CD (2004) Extracellular matrix dynamics during vertebrate axis formation. Dev Biol 268:111–122.  https://doi.org/10.1016/j.ydbio.2003.09.040 CrossRefPubMedGoogle Scholar
  96. 96.
    George EL, Georges-Labouesse EN, Patel-King RS et al (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091PubMedGoogle Scholar
  97. 97.
    Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105PubMedGoogle Scholar
  98. 98.
    Girós A, Grgur K, Gossler A, Costell M (2011) α5β1 integrin-mediated adhesion to fibronectin is required for axis elongation and somitogenesis in mice. PLoS One 6:e22002.  https://doi.org/10.1371/journal.pone.0022002 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Dray N, Lawton A, Nandi A et al (2013) Cell-fibronectin interactions propel vertebrate trunk elongation via tissue mechanics. Curr Biol 23:1335–1341.  https://doi.org/10.1016/j.cub.2013.05.052 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Serwane F, Mongera A, Rowghanian P et al (2017) In vivo quantification of spatially varying mechanical properties in developing tissues. Nat Methods 14:181–186.  https://doi.org/10.1038/nmeth.4101 CrossRefPubMedGoogle Scholar
  101. 101.
    Agero U, Glazier JA, Hosek M (2010) Bulk elastic properties of chicken embryos during somitogenesis. Biomed Eng Online 9:19.  https://doi.org/10.1186/1475-925X-9-19 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Zhou J, Kim HY, Davidson LA (2009) Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136:677–688.  https://doi.org/10.1242/dev.026211 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Mongera A, Rowghanian P, Gustafson HJ, et al. (2018) A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature.  https://doi.org/10.1038/s41586-018-0479-2 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPSToulouseFrance

Personalised recommendations