Advertisement

Cellular and Molecular Life Sciences

, Volume 76, Issue 1, pp 147–161 | Cite as

PUM1 and PUM2 exhibit different modes of regulation for SIAH1 that involve cooperativity with NANOS paralogues

  • Marcin Sajek
  • Damian Mikolaj Janecki
  • Maciej Jerzy Smialek
  • Barbara Ginter-Matuszewska
  • Anna Spik
  • Slawomir Oczkowski
  • Erkut Ilaslan
  • Kamila Kusz-Zamelczyk
  • Maciej Kotecki
  • Jacek Blazewicz
  • Jadwiga Jaruzelska
Original Article
  • 317 Downloads

Abstract

Pumilio (PUM) proteins are RNA-binding proteins that posttranscriptionally regulate gene expression in many organisms. Their PUF domain recognizes specific PUM-binding elements (PBE) in the 3′ untranslated region of target mRNAs while engaging protein cofactors such as NANOS that repress the expression of target mRNAs through the recruitment of effector complexes. Although the general process whereby PUM recognizes individual mRNAs has been studied extensively, the particulars of the mechanism underlying PUM–NANOS cooperation in mRNA regulation and the functional overlap among PUM and NANOS paralogues in mammals have not been elucidated. Here, using the novel PUM1 and PUM2 mRNA target SIAH1 as a model, we show mechanistic differences between PUM1 and PUM2 and between NANOS1, 2, and 3 paralogues in the regulation of SIAH1. Specifically, unlike PUM2, PUM1 exhibited PBE-independent repression of SIAH1 3′UTR-dependent luciferase expression. Concordantly, the PUF domains of PUM1 and PUM2 showed different EMSA complex formation patterns with SIAH1 3′UTRs. Importantly, we show direct binding of NANOS3, but not NANOS2, to SIAH1 3′UTR, which did not require PBEs or the PUF domain. To the best of our knowledge, this is the first report, showing that an NANOS protein directly binds RNA. Finally, using NANOS1 and NANOS3 constructs carrying mutations identified in infertile patients, we show that these mutations disrupt repression of the SIAH1-luciferase reporter and that the central region in NANOS1 appears to contribute to the regulation of SIAH1. Our findings highlight the mechanistic versatility of the PUM/NANOS machinery in mammalian posttranscriptional regulation.

Keywords

3′UTR RNA-binding proteins Posttranscriptional gene regulation 

Notes

Acknowledgements

This work was supported by the National Science Center Poland (Grant no. 2011/01/B/NZ2/04833 to BGM and ETIUDA scholarship no. 2014/12/T/NZ1/00497 to MS) and Ministry of Science and Higher Education (Grant no. N N401318439 to JJ). We thank Dr. Witold Filipowicz, Dr. Thomas Tuschl, Dr. Damian Brauze, Christine Rickards-Rostworowska, and Dr. Miroslawa Siatecka for the helpful discussions and for commenting on the manuscript.

Author contributions

MS conducted the experiments and prepared the figures, DMJ conducted the experiments and prepared the figures, MJS conducted the experiments, BGM analysed the results, AS conducted the experiments, SO performed the bioinformatic search for PUM mRNA targets, EI conducted experiments, KKZ conducted the experiments, MK conducted the experiments and prepared the manuscript, JB designed software to bioinformatically select PUM mRNA targets, and JJ conceived the experiments and prepared the manuscript. All authors reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

18_2018_2926_MOESM1_ESM.docx (20.3 mb)
Supplementary material 1 (DOCX 20813 kb)
18_2018_2926_MOESM2_ESM.docx (38 kb)
Supplementary material 2 (DOCX 37 kb)

References

  1. 1.
    Murata Y, Wharton RP (1995) Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80:747–756CrossRefGoogle Scholar
  2. 2.
    Wharton RP, Struhl G (1991) RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 67:955–967CrossRefGoogle Scholar
  3. 3.
    Ye B, Petritsch C, Clark IE, Gavis ER, Jan LY, Jan YN (2004) Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr Biol 14:314–321.  https://doi.org/10.1016/j.cub.2004.01.052 CrossRefGoogle Scholar
  4. 4.
    Asaoka-Taguchi M, Yamada M, Nakamura A, Hanyu K, Kobayashi S (1999) Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat Cell Biol 1:431–437.  https://doi.org/10.1038/15666 CrossRefGoogle Scholar
  5. 5.
    Kadyrova LY, Habara Y, Lee TH, Wharton RP (2007) Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development 134:1519–1527.  https://doi.org/10.1242/dev.002212 CrossRefGoogle Scholar
  6. 6.
    Wickens M, Bernstein DS, Kimble J, Parker R (2002) A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet 18:150–157CrossRefGoogle Scholar
  7. 7.
    Dalby B, Glover DM (1993) Discrete sequence elements control posterior pole accumulation and translational repression of maternal cyclin B RNA in Drosophila. EMBO J 12:1219–1227CrossRefGoogle Scholar
  8. 8.
    Zamore PD, Bartel DP, Lehmann R, Williamson JR (1999) The PUMILIO-RNA interaction: a single RNA-binding domain monomer recognizes a bipartite target sequence. Biochemistry 38:596–604.  https://doi.org/10.1021/bi982264s CrossRefGoogle Scholar
  9. 9.
    Zamore PD, Williamson JR, Lehmann R (1997) The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3:1421–1433Google Scholar
  10. 10.
    Weidmann CA, Goldstrohm AC (2012) Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and brain tumor. Mol Cell Biol 32:527–540.  https://doi.org/10.1128/MCB.06052-11 CrossRefGoogle Scholar
  11. 11.
    Spassov DS, Jurecic R (2003) The PUF family of RNA-binding proteins: does evolutionarily conserved structure equal conserved function? IUBMB Life 55:359–366.  https://doi.org/10.1080/15216540310001603093 CrossRefGoogle Scholar
  12. 12.
    Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP (2008) Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS One 3:e3164.  https://doi.org/10.1371/journal.pone.0003164 CrossRefGoogle Scholar
  13. 13.
    Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845.  https://doi.org/10.1038/nrg3813 CrossRefGoogle Scholar
  14. 14.
    Quenault T, Lithgow T, Traven A (2011) PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 21:104–112.  https://doi.org/10.1016/j.tcb.2010.09.013 CrossRefGoogle Scholar
  15. 15.
    De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F (2018) Nanos genes and their role in development and beyond. Cell Mol Life Sci 75:1929–1946.  https://doi.org/10.1007/s00018-018-2766-3 CrossRefGoogle Scholar
  16. 16.
    Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E (2014) Structural basis for the Nanos-mediated recruitment of the CCR4–NOT complex and translational repression. Genes Dev 28:888–901.  https://doi.org/10.1101/gad.237289.113 CrossRefGoogle Scholar
  17. 17.
    Lu G, Hall TM (2011) Alternate modes of cognate RNA recognition by human PUMILIO proteins. Structure 19:361–367.  https://doi.org/10.1016/j.str.2010.12.019 CrossRefGoogle Scholar
  18. 18.
    Sonoda J, Wharton RP (1999) Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev 13:2704–2712CrossRefGoogle Scholar
  19. 19.
    Spik A, Oczkowski S, Olszak A, Formanowicz P, Blazewicz J, Jaruzelska J (2006) Human fertility protein PUMILIO2 interacts in vitro with testis mRNA encoding Cdc42 effector 3 (CEP3). Reprod Biol 6:103–113Google Scholar
  20. 20.
    Kusz-Zamelczyk K, Sajek M, Spik A, Glazar R, Jedrzejczak P, Latos-Bielenska A, Kotecki M, Pawelczyk L, Jaruzelska J (2013) Mutations of NANOS1, a human homologue of the Drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia. J Med Genet 50:187–193.  https://doi.org/10.1136/jmedgenet-2012-101230 CrossRefGoogle Scholar
  21. 21.
    Santos MG, Machado AZ, Martins CN, Domenice S, Costa EM, Nishi MY, Ferraz-de-Souza B, Jorge SA, Pereira CA, Soardi FC, de Mello MP, Maciel-Guerra AT, Guerra-Junior G, Mendonca BB (2014) Homozygous inactivating mutation in NANOS3 in two sisters with primary ovarian insufficiency. Biomed Res Int 2014:787465.  https://doi.org/10.1155/2014/787465 Google Scholar
  22. 22.
    Wu X, Wang B, Dong Z, Zhou S, Liu Z, Shi G, Cao Y, Xu Y (2013) A NANOS3 mutation linked to protein degradation causes premature ovarian insufficiency. Cell Death Dis 4:e825.  https://doi.org/10.1038/cddis.2013.368 CrossRefGoogle Scholar
  23. 23.
    Weidmann CA, Qiu C, Arvola RM, Lou TF, Killingsworth J, Campbell ZT, Tanaka Hall TM, Goldstrohm AC (2016) Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio. Elife.  https://doi.org/10.7554/eLife.17096 Google Scholar
  24. 24.
    Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369CrossRefGoogle Scholar
  25. 25.
    Morris AR, Mukherjee N, Keene JD (2008) Ribonomic analysis of human Pum1 reveals cis-trans conservation across species despite evolution of diverse mRNA target sets. Mol Cell Biol 28:4093–4103.  https://doi.org/10.1128/MCB.00155-08 CrossRefGoogle Scholar
  26. 26.
    Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, Agami R (2010) A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12:1014–1020.  https://doi.org/10.1038/ncb2105 CrossRefGoogle Scholar
  27. 27.
    Curtis D, Treiber DK, Tao F, Zamore PD, Williamson JR, Lehmann R (1997) A CCHC metal-binding domain in Nanos is essential for translational regulation. EMBO J 16:834–843.  https://doi.org/10.1093/emboj/16.4.834 CrossRefGoogle Scholar
  28. 28.
    Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M (1999) NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol 9:1009–1018CrossRefGoogle Scholar
  29. 29.
    Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, Saga Y (2003) Conserved role of nanos proteins in germ cell development. Science 301:1239–1241.  https://doi.org/10.1126/science.1085222 CrossRefGoogle Scholar
  30. 30.
    Jaruzelska J, Kotecki M, Kusz K, Spik A, Firpo M, Reijo Pera RA (2003) Conservation of a Pumilio-Nanos complex from Drosophila germ plasm to human germ cells. Dev Genes Evol 213:120–126.  https://doi.org/10.1007/s00427-003-0303-2 Google Scholar
  31. 31.
    Kusz K, Tomczyk L, Spik A, Latos-Bielenska A, Jedrzejczak P, Pawelczyk L, Jaruzelska J (2009) NANOS3 gene mutations in men with isolated sterility phenotype. Mol Reprod Dev 76:804.  https://doi.org/10.1002/mrd.21070 CrossRefGoogle Scholar
  32. 32.
    Kusz KM, Tomczyk L, Sajek M, Spik A, Latos-Bielenska A, Jedrzejczak P, Pawelczyk L, Jaruzelska J (2009) The highly conserved NANOS2 protein: testis-specific expression and significance for the human male reproduction. Mol Hum Reprod 15:165–171.  https://doi.org/10.1093/molehr/gap003 CrossRefGoogle Scholar
  33. 33.
    Julaton VT, Reijo Pera RA (2011) NANOS3 function in human germ cell development. Hum Mol Genet 20:2238–2250.  https://doi.org/10.1093/hmg/ddr114 CrossRefGoogle Scholar
  34. 34.
    Lolicato F, Marino R, Paronetto MP, Pellegrini M, Dolci S, Geremia R, Grimaldi P (2008) Potential role of Nanos3 in maintaining the undifferentiated spermatogonia population. Dev Biol 313:725–738.  https://doi.org/10.1016/j.ydbio.2007.11.011 CrossRefGoogle Scholar
  35. 35.
    Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ, Goldstrohm AC (2012) Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem 287:36370–36383.  https://doi.org/10.1074/jbc.M112.373522 CrossRefGoogle Scholar
  36. 36.
    Kato Y, Katsuki T, Kokubo H, Masuda A, Saga Y (2016) Dazl is a target RNA suppressed by mammalian NANOS2 in sexually differentiating male germ cells. Nat Commun 7:11272.  https://doi.org/10.1038/ncomms11272 CrossRefGoogle Scholar
  37. 37.
    Suzuki A, Igarashi K, Aisaki K, Kanno J, Saga Y (2010) NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc Natl Acad Sci USA 107:3594–3599.  https://doi.org/10.1073/pnas.0908664107 CrossRefGoogle Scholar
  38. 38.
    Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W (2011) miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 18:1218–1226.  https://doi.org/10.1038/nsmb.2166 CrossRefGoogle Scholar
  39. 39.
    Hubstenberger A, Courel M, Benard M, Souquere S, Ernoult-Lange M, Chouaib R, Yi Z, Morlot JB, Munier A, Fradet M, Daunesse M, Bertrand E, Pierron G, Mozziconacci J, Kress M, Weil D (2017) P-body purification reveals the condensation of repressed mRNA regulons. Mol Cell 68:144–157 e5.  https://doi.org/10.1016/j.molcel.2017.09.003 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marcin Sajek
    • 1
  • Damian Mikolaj Janecki
    • 1
  • Maciej Jerzy Smialek
    • 1
  • Barbara Ginter-Matuszewska
    • 1
    • 5
  • Anna Spik
    • 1
  • Slawomir Oczkowski
    • 2
  • Erkut Ilaslan
    • 1
  • Kamila Kusz-Zamelczyk
    • 1
  • Maciej Kotecki
    • 1
    • 3
  • Jacek Blazewicz
    • 2
    • 4
  • Jadwiga Jaruzelska
    • 1
  1. 1.Institute of Human GeneticsPolish Academy of SciencesPoznanPoland
  2. 2.Institute of Computing SciencesPoznan University of TechnologyPoznanPoland
  3. 3.Department of Developmental, Molecular and Chemical BiologyTufts University Medical SchoolBostonUSA
  4. 4.Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
  5. 5.Department of Histology and EmbryologyUniversity of Medical SciencesPoznańPoland

Personalised recommendations