Cellular and Molecular Life Sciences

, Volume 75, Issue 24, pp 4667–4681 | Cite as

Long non-coding RNA AFAP1-AS1 plays an oncogenic role in promoting cell migration in non-small cell lung cancer

  • Juan He
  • Ke Wu
  • Chenglin Guo
  • Jian-Kang Zhou
  • Wenchen Pu
  • Yulan Deng
  • Yuanli Zuo
  • Yun Zhao
  • Lunxu Liu
  • Yu-Quan Wei
  • Yong PengEmail author
Original Article


Long non-coding RNA (lncRNA) plays an important role in tumor progression and metastasis. Emerging evidence indicates that lncRNA actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1) is dysregulated in certain tumors. However, the function of AFAP1-AS1 in non-small cell lung cancer (NSCLC) remains elusive. In this study, we conducted global lncRNA profiling and identified that AFAP1-AS1 is significantly upregulated in NSCLC, suggesting that AFAP1-AS1 may be important for lung cancer development. For the first time, the transcription initiation and termination sites of AFAP1-AS1 were identified by rapid amplification of cDNA ends technology, and the sequencing data indicated that AFAP1-AS1 in lung cancer cells is a novel transcript variant. Through gain- and loss-of-function studies, AFAP1-AS1 was demonstrated to promote cell migration and invasion. Mechanistically, AFAP1-AS1 functions through positively regulating the expression of AFAP1 protein. On the other hand, the expression of lncRNA AFAP1-AS1 negatively correlates with CpG methylation status of its gene promoter, identified in both lung cancer cells and patient tissues, and treatment with DNA methyltransferase inhibitor decitabine significantly activates AFAP1-AS1 expression, strongly supporting that AFAP1-AS1 expression is tightly regulated by DNA methylation. Taken together, this study demonstrates that AFAP1-AS1 acts as an oncogene in NSCLC to promote cell migration partly by upregulating AFAP1 expression, while its own expression is controlled by DNA methylation, and highlights its diagnostic and therapeutic values for NSCLC patients.


Lung cancer AFAP1-AS1 AFAP1 Cell migration Cell invasion DNA methylation 



Non-small cell lung carcinoma


Long non-coding RNA


Actin filament-associated protein 1-antisense RNA 1


Actin filament-associated protein 1


Rapid amplification of cDNA ends


Transcription start site


The Cancer Genome Atlas


Gene Expression Omnibus


Gene ontology


Kyoto encyclopedia of genes and genomes


RNA fluorescence in situ hybridization



This work was supported by National Key R&D Program of China (2016YFA0502204 and 2017YFA0504304), and National Natural Science Foundation of China (81772960 and 81572739).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

18_2018_2923_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 24 kb)


  1. 1.
    Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T et al (2015) Non-small-cell lung cancer. Nat Rev Dis Primers 1:15009CrossRefGoogle Scholar
  2. 2.
    Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641CrossRefGoogle Scholar
  3. 3.
    Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21CrossRefGoogle Scholar
  4. 4.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159CrossRefGoogle Scholar
  5. 5.
    Niland CN, Merry CR, Khalil AM (2012) Emerging roles for long non-coding RNAs in cancer and neurological disorders. Front Genet 3:25CrossRefGoogle Scholar
  6. 6.
    Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1(5):391–407CrossRefGoogle Scholar
  7. 7.
    Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938CrossRefGoogle Scholar
  8. 8.
    Gutschner T, Hämmerle M, Eissmann M, Hsu J, Kim Y, Hung G et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3):1180–1189CrossRefGoogle Scholar
  9. 9.
    Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419CrossRefGoogle Scholar
  10. 10.
    Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K et al (2014) LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell 54(5):777–790CrossRefGoogle Scholar
  11. 11.
    Wu W, Bhagat TD, Yang X, Song JH, Cheng Y, Agarwal R et al (2013) Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology 144(5):956–966CrossRefGoogle Scholar
  12. 12.
    Bo H, Gong Z, Zhang W, Li X, Zeng Y, Liao Q et al (2015) Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma. Oncotarget 6:20404–20418CrossRefGoogle Scholar
  13. 13.
    Ye Y, Chen J, Zhou Y, Fu Z, Zhou Q, Wang Y et al (2015) High expression of AFAP1-AS1 is associated with poor survival and short-term recurrence in pancreatic ductal adenocarcinoma. J Transl Med 13:137CrossRefGoogle Scholar
  14. 14.
    Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360CrossRefGoogle Scholar
  15. 15.
    Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295CrossRefGoogle Scholar
  16. 16.
    Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F et al (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22:1760–1774CrossRefGoogle Scholar
  17. 17.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140CrossRefGoogle Scholar
  18. 18.
    da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  19. 19.
    Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S et al (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322CrossRefGoogle Scholar
  20. 20.
    Laska MJ, Lowe SW, Zender L, Hearn S, Vogel U, Jensen UB et al (2009) Enforced expression of PPP1R13L increases tumorigenesis and invasion through p53-dependent and p53-independent mechanisms. Mol Carcinog 48(9):832–842CrossRefGoogle Scholar
  21. 21.
    Wang J, Zhang J, Wu J, Luo D, Su K, Shi W et al (2012) MicroRNA-610 inhibits the migration and invasion of gastric cancer cells by suppressing the expression of vasodilator-stimulated phosphoprotein. Eur J Cancer 48:1904–1913CrossRefGoogle Scholar
  22. 22.
    Hinrichsen I, Ernst BP, Nuber F, Passmann S, Schäfer D, Steinke V et al (2014) Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1. Mol Cancer 13:11CrossRefGoogle Scholar
  23. 23.
    Varikuti S, Oghumu S, Elbaz M, Volpedo G, Ahirwar DK, Alarcon PC et al (2017) STAT1 gene deficient mice develop accelerated breast cancer growth and metastasis which is reduced by IL-17 blockade. Oncoimmunology 6(11):e1361088CrossRefGoogle Scholar
  24. 24.
    Chen H, Suzuki M, Nakamura Y, Ohira M, Ando S, Iida T et al (2005) Aberrant methylation of FBN2 in human non-small cell lung cancer. Lung Cancer 50:43–49CrossRefGoogle Scholar
  25. 25.
    Liu D, Zhang Y, Li Y, Fan K (2017) Neurofibromatosis type-1 is a prognostic indicator in human gastric carcinoma. Oncotarget 8:82910–82919PubMedPubMedCentralGoogle Scholar
  26. 26.
    Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206CrossRefGoogle Scholar
  27. 27.
    Cunnick JM, Kim S, Hadsell J, Collins S, Cerra C, Reiser P et al (2015) Actin filament-associated protein 1 is required for cSrc activity and secretory activation in the lactating mammary gland. Oncogene 34:2640–2649CrossRefGoogle Scholar
  28. 28.
    Zhang JY, Weng MZ, Song FB, Xu YG, Liu Q, Wu JY et al (2016) Long noncoding RNA AFAP1-AS1 indicates a poor prognosis of hepatocellular carcinoma and promotes cell proliferation and invasion via upregulation of the RhoA/Rac2 signaling. Int J Oncol 48:1590–1598CrossRefGoogle Scholar
  29. 29.
    Ma F, Wang SH, Cai Q, Zhang MD, Yang Y, Ding J (2016) Overexpression of lncRNA AFAP1-AS1 predicts poor prognosis and promotes cells proliferation and invasion in gallbladder cancer. Biomed Pharmacother 84:1249–1255CrossRefGoogle Scholar
  30. 30.
    Wang F, Ni H, Sun F, Li M, Chen L (2016) Overexpression of lncRNA AFAP1-AS1 correlates with poor prognosis and promotes tumorigenesis in colorectal cancer. Biomed Pharmacother 81:152–159CrossRefGoogle Scholar
  31. 31.
    Han X, Wang L, Ning Y, Li S, Wang Z (2016) Long non-coding RNA AFAP1-AS1 facilitates tumor growth and promotes metastasis in colorectal cancer. Biol Res 49(1):36CrossRefGoogle Scholar
  32. 32.
    Shi X, Zhang H, Wang M, Xu X, Zhao Y, He R et al (2017) LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells. Oncotarget 8:58394–58404PubMedPubMedCentralGoogle Scholar
  33. 33.
    Yuan Z, Xiu C, Song K, Pei R, Miao S, Mao X et al (2018) Long non-coding RNA AFAP1-AS1/miR-320a/RBPJ axis regulates laryngeal carcinoma cell stemness and chemoresistance. J Cell Mol Med. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tang J, Zhong G, Wu J, Chen H, Jia Y (2018) Long noncoding RNA AFAP1-AS1 facilitates tumor growth through enhancer of zeste homolog 2 in colorectal cancer. Am J Cancer Res 8(5):892–902PubMedPubMedCentralGoogle Scholar
  35. 35.
    Magistri M, Faghihi MA, St Laurent G, Wahlestedt G III (2012) Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet 28:389–396CrossRefGoogle Scholar
  36. 36.
    Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457CrossRefGoogle Scholar
  37. 37.
    Flynn DC, Leu TH, Reynolds AB, Parsons JT (1993) Identification and sequence analysis of cDNAs encoding a 110-kilodalton actin filament-associated pp60src substrate. Mol Cell Biol 13:7892–7900CrossRefGoogle Scholar
  38. 38.
    Dorfleutner A, Cho Y, Vincent D, Cunnick J, Lin H, Weed SA et al (2008) Phosphorylation of AFAP-110 affects podosome lifespan in A7r5 cells. J Cell Sci 121:2394–2405CrossRefGoogle Scholar
  39. 39.
    Baisden JM, Gatesman AS, Cherezova L, Jiang BH, Flynn DC (2001) The intrinsic ability of AFAP-110 to alter actin filament integrity is linked with its ability to also activate cellular tyrosine kinases. Oncogene 20:6607–6616CrossRefGoogle Scholar
  40. 40.
    Qian Y, Baisden JM, Westin EH, Guappone AC, Koay TC, Flynn DC (1998) Src can regulate carboxy terminal interactions with AFAP-110, which influence self-association, cell localization and actin filament integrity. Oncogene 16:2185–2195CrossRefGoogle Scholar
  41. 41.
    Heilmann K, Toth R, Bossmann C, Klimo K, Plass C, Gerhauser C (2017) Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer. Oncogene 36:6446–6461CrossRefGoogle Scholar
  42. 42.
    Diaz-Lagares A, Crujeiras AB, Lopez-Serra P, Soler M, Setien F, Goyal A et al (2016) Epigenetic inactivation of the p53-induced long non-coding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci USA 113:E7535–E7544CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
  2. 2.College of Life SciencesSichuan UniversityChengduChina

Personalised recommendations