Cellular and Molecular Life Sciences

, Volume 75, Issue 22, pp 4125–4149 | Cite as

Roles of melatonin and its receptors in cardiac ischemia–reperfusion injury

  • Kodchanan Singhanat
  • Nattayaporn Apaijai
  • Siriporn C. Chattipakorn
  • Nipon ChattipakornEmail author


Acute myocardial infarction (AMI) has been an economic and health burden in most countries around the world. Reperfusion is a standard treatment for AMI as it can actively restore blood supply to the ischemic site. However, reperfusion itself can cause additional damage; a process known as cardiac ischemia/reperfusion (I/R) injury. Although several pharmacological interventions have been shown to reduce tissue damage during I/R injury, they usually have undesirable effects. Therefore, endogenous substances such as melatonin have become a field of active investigation. Melatonin is a hormone that is produced by the pineal gland, and it plays an important role in regulating many physiological functions in human body. Accumulated data from studies carried out in vitro, ex vivo, in vivo, and also from clinical studies have provided information regarding possible beneficial effects of melatonin on cardiac I/R such as attenuated cell death, and increased cell survival, leading to reduced infarct size and improved left-ventricular function. This review comprehensively discusses and summarizes those effects of melatonin on cardiac I/R. In addition, consistent and inconsistent reports regarding the effects of melatonin in cases of cardiac I/R together with gaps in surrounding knowledge such as the appropriate onset and duration of melatonin administration are presented and discussed. From this review, we hope to provide important information which could be used to warrant more clinical studies in the future to explore the clinical benefits of melatonin in AMI patients.


Melatonin Melatonin receptors Ischemia/reperfusion Left-ventricular function Infarct size 



This work was supported by Thailand Research Fund grants: RTA 6080003 (SCC), TRG6080005 (NA); the Royal Golden Jubilee Program (KS and NC); the NSTDA Research Chair grant from the National Science and Technology Development Agency Thailand (NC), and the Chiang Mai University Center of Excellence Award (NC).

Author contributions

SCC and NC: Conception; KS, NA, SCC, and NC: drafting of the manuscript, revision of the manuscript, and final approval.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhao Z, Winget M (2011) Economic burden of illness of acute coronary syndromes: medical and productivity costs. BMC Health Serv Res 11:35CrossRefGoogle Scholar
  2. 2.
    Seo H et al (2015) Recent trends in economic burden of acute myocardial infarction in South Korea. PLoS One 10:e0117446CrossRefGoogle Scholar
  3. 3.
    Nguyen TP, Nguyen T, Postma M (2015) Economic burden of acute myocardial infarction in Vietnam. Value Health 18:A389CrossRefGoogle Scholar
  4. 4.
    Lacey L, Tabberer M (2005) Economic burden of post-acute myocardial infarction heart failure in the United Kingdom. Eur J Heart Fail 7:677–683CrossRefGoogle Scholar
  5. 5.
    Tarride JE, Lim M, DesMeules M, Luo W, Burke N, O’Reilly D, Bowen J, Goeree R (2009) A review of the cost of cardiovascular disease. Can J Cardiol 25:e195–e202CrossRefGoogle Scholar
  6. 6.
    Ambrose JA, Singh M (2015) Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000Prime Rep 7:8CrossRefGoogle Scholar
  7. 7.
    Ribichini F, Wijns W (2002) Acute myocardial infarction: reperfusion treatment. Heart 88:298–305CrossRefGoogle Scholar
  8. 8.
    Reddy K, Khaliq A, Henning RJ (2015) Recent advances in the diagnosis and treatment of acute myocardial infarction. World J Cardiol 7:243–276CrossRefGoogle Scholar
  9. 9.
    Rentrop KP, Feit F (2015) Reperfusion therapy for acute myocardial infarction: concepts and controversies from inception to acceptance. Am Heart J 170:971–980CrossRefGoogle Scholar
  10. 10.
    Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJ, Zisapel N, Cardinali DP (2008) Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol 85:335–353CrossRefGoogle Scholar
  11. 11.
    Acuna-Castroviejo D et al (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025CrossRefGoogle Scholar
  12. 12.
    Favero G, Franceschetti L, Buffoli B, Moghadasian MH, Reiter RJ, Rodella LF, Rezzani R (2017) Melatonin: protection against age-related cardiac pathology. Ageing Res Rev 35:336–349CrossRefGoogle Scholar
  13. 13.
    Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB (2017) Melatonin for the prevention and treatment of cancer. Oncotarget 8:39896–39921PubMedPubMedCentralGoogle Scholar
  14. 14.
    Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 39:1723–1729CrossRefGoogle Scholar
  15. 15.
    Sun H, Gusdon AM, Qu S (2016) Effects of melatonin on cardiovascular diseases: progress in the past year. Curr Opin Lipidol 27:408–413CrossRefGoogle Scholar
  16. 16.
    Ceyran H, Narin F, Narin N, Akgun H, Ceyran AB, Ozturk F, Akcali Y (2008) The effect of high dose melatonin on cardiac ischemia- reperfusion Injury. Yonsei Med J 49:735–741CrossRefGoogle Scholar
  17. 17.
    Dave RH, Hale SL, Kloner RA (1998) The effect of melatonin on hemodynamics, blood flow, and myocardial infarct size in a rabbit model of ischemia–reperfusion. J Cardiovasc Pharmacol Ther 3:153–160CrossRefGoogle Scholar
  18. 18.
    Sahna E, Deniz E, Bay-Karabulut A, Burma O (2008) Melatonin protects myocardium from ischemia-reperfusion injury in hypertensive rats: role of myeloperoxidase activity. Clin Exp Hypertens 30:673–681CrossRefGoogle Scholar
  19. 19.
    Ekelof SV et al (2016) Effects of intracoronary melatonin on ischemia-reperfusion injury in ST-elevation myocardial infarction. Heart Vessels 31:88–95CrossRefGoogle Scholar
  20. 20.
    Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia MJ, Sanchez J, Marrero F, de Armas-Trujillo D (2002) Decreased nocturnal melatonin levels during acute myocardial infarction. J Pineal Res 33:248–252CrossRefGoogle Scholar
  21. 21.
    Dominguez-Rodriguez A, Abreu-Gonzalez P, Arroyo-Ucar E, Reiter RJ (2012) Decreased level of melatonin in serum predicts left ventricular remodelling after acute myocardial infarction. J Pineal Res 53:319–323CrossRefGoogle Scholar
  22. 22.
    Tengattini S, Reiter RJ, Tan DX, Terron MP, Rodella LF, Rezzani R (2008) Cardiovascular diseases: protective effects of melatonin. J Pineal Res 44:16–25PubMedGoogle Scholar
  23. 23.
    Yang Y et al (2014) A review of melatonin as a suitable antioxidant against myocardial ischemia-reperfusion injury and clinical heart diseases. J Pineal Res 57:357–366CrossRefGoogle Scholar
  24. 24.
    Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A (2016) A review of melatonin, its receptors and drugs. Eurasian J Med 48:135–141CrossRefGoogle Scholar
  25. 25.
    Reiter RJ, Tan DX, Galano A (2014) Melatonin: exceeding expectations. Physiology (Bethesda) 29:325–333Google Scholar
  26. 26.
    Yu L et al (2015) Membrane receptor-dependent Notch1/Hes1 activation by melatonin protects against myocardial ischemia-reperfusion injury: in vivo and in vitro studies. J Pineal Res 59:420–433CrossRefGoogle Scholar
  27. 27.
    Yu L et al (2014) Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1. J Pineal Res 57:228–238CrossRefGoogle Scholar
  28. 28.
    Yang Y et al (2013) JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res 55:275–286CrossRefGoogle Scholar
  29. 29.
    Yu LM et al (2017) Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation. Biochim Biophys Acta 1864:563–578CrossRefGoogle Scholar
  30. 30.
    Yu L et al (2016) Melatonin reduces PERK-eIF2alpha-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia-reperfusion injury: role of RISK and SAFE pathways interaction. Apoptosis 21:809–824CrossRefGoogle Scholar
  31. 31.
    Zhou H et al (2017) Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res 63:e12413CrossRefGoogle Scholar
  32. 32.
    Zhai M et al (2017) Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res 63:e12419CrossRefGoogle Scholar
  33. 33.
    Petrosillo G, Colantuono G, Moro N, Ruggiero FM, Tiravanti E, Di Venosa N, Fiore T, Paradies G (2009) Melatonin protects against heart ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening. Am J Physiol Heart Circ Physiol 297:H1487–H1493CrossRefGoogle Scholar
  34. 34.
    Chen Z, Chua CC, Gao J, Chua KW, Ho YS, Hamdy RC, Chua BH (2009) Prevention of ischemia/reperfusion-induced cardiac apoptosis and injury by melatonin is independent of glutathione peroxdiase 1. J Pineal Res 46:235–241CrossRefGoogle Scholar
  35. 35.
    Dobsak P et al (2003) Melatonin protects against ischemia-reperfusion injury and inhibits apoptosis in isolated working rat heart. Pathophysiology 9:179–187CrossRefGoogle Scholar
  36. 36.
    Petrosillo G et al (2006) Protective effect of melatonin against mitochondrial dysfunction associated with cardiac ischemia- reperfusion: role of cardiolipin. FASEB J 20:269–276CrossRefGoogle Scholar
  37. 37.
    Wong R, Steenbergen C, Murphy E (2012) Mitochondrial permeability transition pore and calcium handling. Methods Mol Biol 810:235–242CrossRefGoogle Scholar
  38. 38.
    Morciano G, Giorgi C, Bonora M, Punzetti S, Pavasini R, Wieckowski MR, Campo G, Pinton P (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 78:142–153CrossRefGoogle Scholar
  39. 39.
    Yeung HM, Hung MW, Lau CF, Fung ML (2015) Cardioprotective effects of melatonin against myocardial injuries induced by chronic intermittent hypoxia in rats. J Pineal Res 58:12–25CrossRefGoogle Scholar
  40. 40.
    Yeung HM, Hung MW, Fung ML (2008) Melatonin ameliorates calcium homeostasis in myocardial and ischemia-reperfusion injury in chronically hypoxic rats. J Pineal Res 45:373–382CrossRefGoogle Scholar
  41. 41.
    Nduhirabandi F, Lamont K, Albertyn Z, Opie LH, Lecour S (2016) Role of toll-like receptor 4 in melatonin-induced cardioprotection. J Pineal Res 60:39–47CrossRefGoogle Scholar
  42. 42.
    Lochner A, Genade S, Davids A, Ytrehus K, Moolman JA (2006) Short- and long-term effects of melatonin on myocardial post-ischemic recovery. J Pineal Res 40:56–63CrossRefGoogle Scholar
  43. 43.
    Diez ER, Prados LV, Carrion A, Ponce ZA, Miatello RM (2009) A novel electrophysiologic effect of melatonin on ischemia/reperfusion-induced arrhythmias in isolated rat hearts. J Pineal Res 46:155–160CrossRefGoogle Scholar
  44. 44.
    Osada M, Netticadan T, Tamura K, Dhalla NS (1998) Modification of ischemia-reperfusion-induced changes in cardiac sarcoplasmic reticulum by preconditioning. Am J Physiol 274:H2025–H2034PubMedGoogle Scholar
  45. 45.
    Stroethoff M, Behmenburg F, Spittler K, Raupach A, Heinen A, Hollmann MW, Huhn R, Mathes A (2018) Activation of melatonin receptors by Ramelteon induces cardioprotection by postconditioning in the rat heart. Anesth Analg 126:2112–2115CrossRefGoogle Scholar
  46. 46.
    Ho YS, Magnenat JL, Bronson RT, Cao J, Gargano M, Sugawara M, Funk CD (1997) Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 272:16644–16651CrossRefGoogle Scholar
  47. 47.
    Sahna E, Parlakpinar H, Turkoz Y, Acet A (2005) Protective effects of melatonin on myocardial ischemia/reperfusion induced infarct size and oxidative changes. Physiol Res 54:491–495PubMedGoogle Scholar
  48. 48.
    Liu LF, Qian ZH, Qin Q, Shi M, Zhang H, Tao XM, Zhu WP (2015) Effect of melatonin on oncosis of myocardial cells in the myocardial ischemia/reperfusion injury rat and the role of the mitochondrial permeability transition pore. Genet Mol Res 14:7481–7489CrossRefGoogle Scholar
  49. 49.
    Shpilka T, Haynes CM (2018) The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 19:109–120CrossRefGoogle Scholar
  50. 50.
    Maneechote C, Palee S, Chattipakorn SC, Chattipakorn N (2017) Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 21:2643–2653CrossRefGoogle Scholar
  51. 51.
    Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL (2017) Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 57:535–565CrossRefGoogle Scholar
  52. 52.
    Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351:152–166CrossRefGoogle Scholar
  53. 53.
    Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP (2016) Update on melatonin receptors: IUPHAR review 20. Br J Pharmacol 173:2702–2725CrossRefGoogle Scholar
  54. 54.
    Genade S, Genis A, Ytrehus K, Huisamen B, Lochner A (2008) Melatonin receptor-mediated protection against myocardial ischaemia/reperfusion injury: role of its anti-adrenergic actions. J Pineal Res 45:449–458CrossRefGoogle Scholar
  55. 55.
    He B, Zhao Y, Xu L, Gao L, Su Y, Lin N, Pu J (2016) The nuclear melatonin receptor RORalpha is a novel endogenous defender against myocardial ischemia/reperfusion injury. J Pineal Res 60:313–326CrossRefGoogle Scholar
  56. 56.
    Jetten AM (2009) Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal 7:e003CrossRefGoogle Scholar
  57. 57.
    Dwaich KH, Al-Amran FG, Al-Sheibani BI, Al-Aubaidy HA (2016) Melatonin effects on myocardial ischemia-reperfusion injury: impact on the outcome in patients undergoing coronary artery bypass grafting surgery. Int J Cardiol 221:977–986CrossRefGoogle Scholar
  58. 58.
    Ekeloef S et al (2017) Effect of intracoronary and intravenous melatonin on myocardial salvage index in patients with ST-elevation myocardial infarction: a randomized placebo controlled trial. J Cardiovasc Transl Res 10:470–479CrossRefGoogle Scholar
  59. 59.
    Dominguez-Rodriguez A et al (2017) Usefulness of early treatment with melatonin to reduce infarct size in patients with ST-segment elevation myocardial infarction receiving percutaneous coronary intervention (from the melatonin adjunct in the acute myocardial infarction treated with angioplasty trial). Am J Cardiol 120:522–526CrossRefGoogle Scholar
  60. 60.
    Geyik S, Yiğiter R, Akçalı A, Deniz H, Geyik AM, Elçi MA, Hafız E (2015) The effect of circadian melatonin levels on inflammation and neurocognitive functions following coronary bypass surgery. Ann Thorac Cardiovasc Surg 21:466–473CrossRefGoogle Scholar
  61. 61.
    Yu L et al (2017) Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1alpha-SIRT3 signaling. Sci Rep 7:41337CrossRefGoogle Scholar
  62. 62.
    Yu L et al (2015) Reduced silent information regulator 1 signaling exacerbates myocardial ischemia-reperfusion injury in type 2 diabetic rats and the protective effect of melatonin. J Pineal Res 59:376–390CrossRefGoogle Scholar
  63. 63.
    Rossello X, Yellon DM (2018) The RISK pathway and beyond. Basic Res Cardiol 113:2CrossRefGoogle Scholar
  64. 64.
    Hadebe N, Cour M, Lecour S (2018) The SAFE pathway for cardioprotection: is this a promising target? Basic Res Cardiol 113:9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  2. 2.Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai UniversityChiang MaiThailand
  3. 3.Cardiac Electrophysiology Unit, Department of Physiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  4. 4.Department of Oral Biology and Diagnostic Sciences, Faculty of DentistryChiang Mai UniversityChiang MaiThailand

Personalised recommendations