Advertisement

Cellular and Molecular Life Sciences

, Volume 75, Issue 22, pp 4079–4091 | Cite as

Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia

  • Ting Chen
  • Yutao Wu
  • Wenduo Gu
  • Qingbo Xu
Review
  • 229 Downloads

Abstract

Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a variable number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for vascular diseases and shed new light on regenerative medicine.

Keywords

Stem cells Progenitor cells Hyperlipidemia Atherosclerosis 

Notes

Funding

This work was supported by British Heart Foundation (RG/14/6/31144) and National Natural Science Foundation of China (91639302, 91339102, and 91539103).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247PubMedGoogle Scholar
  2. 2.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403PubMedPubMedCentralGoogle Scholar
  3. 3.
    Latsinik NV, Luria EA, Friedenstein AJ, Samoylina NL, Chertkov IL (1970) Colony-forming cells in organ cultures of embryonal liver. J Cell Physiol 75:163–165PubMedGoogle Scholar
  4. 4.
    Friedenstein A, Kuralesova AI (1971) Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation 12:99–108PubMedGoogle Scholar
  5. 5.
    Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Ruadkow IA (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92PubMedGoogle Scholar
  6. 6.
    Friedenstein AJ, Ivanov-Smolenski AA, Chajlakjan RK, Gorskaya UF, Kuralesova AI, Latzinik NW, Gerasimow UW (1978) Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp Hematol 6:440–444PubMedGoogle Scholar
  7. 7.
    Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274PubMedGoogle Scholar
  8. 8.
    Friedenstein AJ (1980) Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus 25:19–29PubMedGoogle Scholar
  9. 9.
    Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20:263–272PubMedGoogle Scholar
  10. 10.
    Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60PubMedGoogle Scholar
  11. 11.
    Friedenstein AJ (1995) Marrow stromal fibroblasts. Calcif Tissue Int 56(Suppl 1):S17Google Scholar
  12. 12.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228Google Scholar
  13. 13.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedPubMedCentralGoogle Scholar
  14. 14.
    Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110PubMedGoogle Scholar
  15. 15.
    De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942PubMedGoogle Scholar
  16. 16.
    Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155PubMedGoogle Scholar
  17. 17.
    Salingcarnboriboon R, Yoshitake H, Tsuji K, Obinata M, Amagasa T, Nifuji A, Noda M (2003) Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res 287:289–300PubMedGoogle Scholar
  18. 18.
    Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227PubMedGoogle Scholar
  19. 19.
    Toma JG, McKenzie IA, Bagli D, Miller FD (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23:727–737PubMedGoogle Scholar
  20. 20.
    Alsalameh S, Amin R, Gemba T, Lotz M (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50:1522–1532PubMedGoogle Scholar
  21. 21.
    Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535PubMedGoogle Scholar
  22. 22.
    Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res Off J Am Soc Bone Miner Res 18:696–704Google Scholar
  23. 23.
    da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213PubMedGoogle Scholar
  24. 24.
    Villaron EM, Almeida J, Lopez-Holgado N, Alcoceba M, Sanchez-Abarca LI, Sanchez-Guijo FM, Alberca M, Perez-Simon JA, San Miguel JF, Del Canizo MC (2004) Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica 89:1421–1427PubMedGoogle Scholar
  25. 25.
    Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402PubMedGoogle Scholar
  26. 26.
    Gu W, Hong X, Potter C, Qu A, Xu Q (2017) Mesenchymal stem cells and vascular regeneration. Microcirculation 24(1):e12324Google Scholar
  27. 27.
    Tannock LR (2008) Advances in the management of hyperlipidemia-induced atherosclerosis. Expert Rev Cardiovasc Ther 6:369–383PubMedGoogle Scholar
  28. 28.
    Plakkal Ayyappan J, Paul A, Goo YH (2016) Lipid droplet-associated proteins in atherosclerosis. Mol Med Rep 13:4527–4534 (Review) PubMedGoogle Scholar
  29. 29.
    Goldstein JL, Brown MS (1973) Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc Natl Acad Sci USA 70:2804–2808PubMedGoogle Scholar
  30. 30.
    Innerarity TL, Weisgraber KH, Arnold KS, Mahley RW, Krauss RM, Vega GL, Grundy SM (1987) Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci USA 84:6919–6923PubMedGoogle Scholar
  31. 31.
    Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG (1973) Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Investig 52:1544–1568PubMedGoogle Scholar
  32. 32.
    Genest JJ Jr, Martin-Munley SS, McNamara JR, Ordovas JM, Jenner J, Myers RH, Silberman SR, Wilson PW, Salem DN, Schaefer EJ (1992) Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 85:2025–2033PubMedGoogle Scholar
  33. 33.
    Carr MC, Brunzell JD (2004) Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. J Clin Endocrinol Metab 89:2601–2607PubMedGoogle Scholar
  34. 34.
    Chin-Dusting JP, Shaw JA (2001) Lipids and atherosclerosis: clinical management of hypercholesterolaemia. Expert Opin Pharmacother 2:419–430PubMedGoogle Scholar
  35. 35.
    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126PubMedGoogle Scholar
  36. 36.
    Raines EW, Ross R (1993) Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis. Br Heart J 69:S30–S37PubMedPubMedCentralGoogle Scholar
  37. 37.
    Torsney E, Xu Q (2011) Resident vascular progenitor cells. J Mol Cell Cardiol 50:304–311PubMedGoogle Scholar
  38. 38.
    Sabatini F, Petecchia L, Tavian M, Jodon de Villeroche V, Rossi GA, Brouty-Boye D (2005) Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Investig J Tech Methods Pathol 85:962–971Google Scholar
  39. 39.
    Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62PubMedGoogle Scholar
  40. 40.
    Ning H, Lin G, Lue TF, Lin CS (2011) Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen. Biochem Biophys Res Commun 413:353–357PubMedPubMedCentralGoogle Scholar
  41. 41.
    Sacchetti B, Funari A, Remoli C, Giannicola G, Kogler G, Liedtke S, Cossu G, Serafini M, Sampaolesi M, Tagliafico E, Tenedini E, Saggio I, Robey PG, Riminucci M, Bianco P (2016) No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Rep 6:897–913Google Scholar
  42. 42.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedPubMedCentralGoogle Scholar
  43. 43.
    Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192PubMedGoogle Scholar
  44. 44.
    Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110:2226–2232PubMedGoogle Scholar
  45. 45.
    Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Investig 113:1258–1265PubMedGoogle Scholar
  46. 46.
    Xu Q (2007) Progenitor cells in vascular repair. Curr Opin Lipidol 18:534–539PubMedGoogle Scholar
  47. 47.
    Xu Q (2008) Stem cells and transplant arteriosclerosis. Circ Res 102:1011–1024PubMedGoogle Scholar
  48. 48.
    Worsdorfer P, Mekala SR, Bauer J, Edenhofer F, Kuerten S, Ergun S (2017) The vascular adventitia: an endogenous, omnipresent source of stem cells in the body. Pharmacol Ther 171:13–29PubMedGoogle Scholar
  49. 49.
    Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami AP, Kränkel N, Katare R, Angelini G, Emanueli C, Madeddu P (2010) Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121:1735–1745PubMedPubMedCentralGoogle Scholar
  50. 50.
    Nadaud S, Dierick F, Tiphaine H, Monceau V, Mougenot N, Crisan M, Dorfmuller P, Marodon G, Besson V, Marazzi G (2015) Lung progenitor cells expressing PW1 gene participate in vascular remodeling during pulmonary arterial hypertension. FASEB J 29:LB569Google Scholar
  51. 51.
    Mao S-Z, Ye X, Liu G, Song D, Liu SF (2015) Resident endothelial cells and endothelial progenitor cells restore endothelial barrier function after inflammatory lung injury. Arterioscler Thromb Vasc Biol 35:1635–1644PubMedPubMedCentralGoogle Scholar
  52. 52.
    Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu JS, Helms JA, Li S (2012) Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun 3:875PubMedPubMedCentralGoogle Scholar
  53. 53.
    Roostalu U, Aldeiri B, Albertini A, Humphreys NE, Simonsen-Jackson M, Wong JK, Cossu G (2017) Distinct cellular mechanisms underlie smooth muscle turnover in vascular development and repair. Circ Res 122(2):267–281PubMedPubMedCentralGoogle Scholar
  54. 54.
    Bab I, Ashton BA, Gazit D, Marx G, Williamson MC, Owen ME (1986) Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J Cell Sci 84:139–151PubMedGoogle Scholar
  55. 55.
    Bennett JH, Joyner CJ, Triffitt JT, Owen ME (1991) Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 99(Pt 1):131–139PubMedGoogle Scholar
  56. 56.
    Caplan AI (1991) Mesenchymal stem cells. J Orthopaed Res Off Publ Orthopaed Res Soc 9:641–650Google Scholar
  57. 57.
    Ohgushi H, Goldberg VM, Caplan AI (1989) Repair of bone defects with marrow cells and porous ceramic: experiments in rats. Acta Orthopaed Scand 60:334–339Google Scholar
  58. 58.
    Ohgushi H, Goldberg VM, Caplan AI (1989) Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthopaed Res Off Publ Orthopaed Res Soc 7:568–578Google Scholar
  59. 59.
    Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102(Pt 2):341–351PubMedGoogle Scholar
  60. 60.
    Hsieh JY, Fu YS, Chang SJ, Tsuang YH, Wang HW (2010) Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord. Stem Cells Dev 19:1895–1910PubMedGoogle Scholar
  61. 61.
    Yu S, Long J, Yu J, Du J, Ma P, Ma Y, Yang D, Fan Z (2013) Analysis of differentiation potentials and gene expression profiles of mesenchymal stem cells derived from periodontal ligament and Wharton’s jelly of the umbilical cord. Cells Tissues Organs 197:209–223PubMedGoogle Scholar
  62. 62.
    Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, Aziz ZA (2012) Unique molecular signatures influencing the biological function and fate of post-natal stem cells isolated from different sources. J Tissue Eng Regen Med 9:E252PubMedGoogle Scholar
  63. 63.
    Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026PubMedGoogle Scholar
  64. 64.
    El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V (2014) Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev 20:523–544PubMedGoogle Scholar
  65. 65.
    Cawthorn WP, Scheller EL, MacDougald OA (2012) Adipose tissue stem cells: the great WAT hope. Trends Endocrinol Metab TEM 23:270–277PubMedGoogle Scholar
  66. 66.
    Cox BE, Griffin EE, Ullery JC, Jerome WG (2007) Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J Lipid Res 48:1012–1021PubMedGoogle Scholar
  67. 67.
    Kokkinopoulos I, Wong MM, Potter CMF, Xie Y, Yu B, Warren DT, Nowak WN, Le Bras A, Ni Z, Zhou C, Ruan X, Karamariti E, Hu Y, Zhang L, Xu Q (2017) Adventitial SCA-1 + progenitor cell gene sequencing reveals the mechanisms of cell migration in response to hyperlipidemia. Stem Cell Rep 9:681–696Google Scholar
  68. 68.
    Wang GP, Deng ZD, Ni J, Qu ZL (1997) Oxidized low density lipoprotein and very low density lipoprotein enhance expression of monocyte chemoattractant protein-1 in rabbit peritoneal exudate macrophages. Atherosclerosis 133:31–36PubMedGoogle Scholar
  69. 69.
    Clarke MC, Talib S, Figg NL, Bennett MR (2010) Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res 106:363–372PubMedGoogle Scholar
  70. 70.
    Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW, Valente AJ, Berliner JA, Drinkwater DC, Laks H et al (1991) Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Investig 88:2039–2046PubMedGoogle Scholar
  71. 71.
    Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301PubMedGoogle Scholar
  72. 72.
    Zhong Y, Liu T, Guo Z (2012) Curcumin inhibits ox-LDL-induced MCP-1 expression by suppressing the p38MAPK and NF-kappaB pathways in rat vascular smooth muscle cells. Inflamm Res Off J Eur Histamine Res Soc 61:61–67Google Scholar
  73. 73.
    Kiyan Y, Tkachuk S, Hilfiker-Kleiner D, Haller H, Fuhrman B, Dumler I (2014) oxLDL induces inflammatory responses in vascular smooth muscle cells via urokinase receptor association with CD36 and TLR4. J Mol Cell Cardiol 66:72–82PubMedGoogle Scholar
  74. 74.
    Li W, Zhi W, Liu F, He Z, Wang X, Niu X (2017) Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro. Exp Cell Res 353:26–34PubMedGoogle Scholar
  75. 75.
    Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, Rollins BJ, Charo IF (1999) MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Investig 103:773–778PubMedGoogle Scholar
  76. 76.
    Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281PubMedGoogle Scholar
  77. 77.
    Chawla A (2010) Control of macrophage activation and function by PPARs. Circ Res 106:1559–1569PubMedPubMedCentralGoogle Scholar
  78. 78.
    Peled M, Fisher EA (2014) Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front Immunol 5:579PubMedPubMedCentralGoogle Scholar
  79. 79.
    Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, Raetz CR, Wang EW, Kelly SL, Sullards MC, Murphy RC, Merrill AH Jr, Brown HA, Dennis EA, Li AC, Ley K, Tsimikas S, Fahy E, Subramaniam S, Quehenberger O, Russell DW, Glass CK (2012) Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151:138–152PubMedPubMedCentralGoogle Scholar
  80. 80.
    Boullier A, Gillotte KL, Horkko S, Green SR, Friedman P, Dennis EA, Witztum JL, Steinberg D, Quehenberger O (2000) The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J Biol Chem 275:9163–9169PubMedGoogle Scholar
  81. 81.
    Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Nerem RM (1991) The pathogenesis of atherosclerosis: an overview. Clin Cardiol 14:I1–I16PubMedGoogle Scholar
  82. 82.
    Thanopoulou A, Karamanos B, Archimandritis A (2005) Comment on: McClung JA, Naseer N, Saleem M et al (2005) circulating endothelial cells are elevated in patients with type 2 diabetes mellitus independently of HbA1c. Diabetologia 48:345–350. Diabetologia 48:2687 (author reply 2688) PubMedGoogle Scholar
  83. 83.
    Jaumdally RJ, Goon PK, Varma C, Blann AD, Lip GY (2010) Effects of atorvastatin on circulating CD34 +/CD133 +/CD45 − progenitor cells and indices of angiogenesis (vascular endothelial growth factor and the angiopoietins 1 and 2) in atherosclerotic vascular disease and diabetes mellitus. J Intern Med 267:385–393PubMedGoogle Scholar
  84. 84.
    Boyle AJ, Whitbourn R, Schlicht S, Krum H, Kocher A, Nandurkar H, Bergmann S, Daniell M, O’Day J, Skerrett D, Haylock D, Gilbert RE, Itescu S (2006) Intra-coronary high-dose CD34 + stem cells in patients with chronic ischemic heart disease: a 12-month follow-up. Int J Cardiol 109:21–27PubMedGoogle Scholar
  85. 85.
    Schober A, Zernecke A, Liehn EA, von Hundelshausen P, Knarren S, Kuziel WA, Weber C (2004) Crucial role of the CCL2/CCR2 axis in neointimal hyperplasia after arterial injury in hyperlipidemic mice involves early monocyte recruitment and CCL2 presentation on platelets. Circ Res 95:1125–1133PubMedGoogle Scholar
  86. 86.
    Vanella L, Sodhi K, Kim DH, Puri N, Maheshwari M, Hinds TD, Bellner L, Goldstein D, Peterson SJ, Shapiro JI, Abraham NG (2013) Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Res Ther 4:28PubMedPubMedCentralGoogle Scholar
  87. 87.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedPubMedCentralGoogle Scholar
  88. 88.
    Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ (2003) Mesenchymal stem cells. Arch Med Res 34:565–571PubMedGoogle Scholar
  89. 89.
    Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520Google Scholar
  90. 90.
    Yao L, Li ZR, Su WR, Li YP, Lin ML, Zhang WX, Liu Y, Wan Q, Liang D (2012) Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS One 7:e30842PubMedPubMedCentralGoogle Scholar
  91. 91.
    Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS (2010) Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28:329–343PubMedGoogle Scholar
  92. 92.
    Sheikh AM, Nagai A, Wakabayashi K, Narantuya D, Kobayashi S, Yamaguchi S, Kim SU (2011) Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: contribution of fractalkine and IL-5. Neurobiol Dis 41:717–724PubMedGoogle Scholar
  93. 93.
    Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Ren Physiol 289:F31–F42Google Scholar
  94. 94.
    Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63PubMedPubMedCentralGoogle Scholar
  95. 95.
    Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–1863PubMedGoogle Scholar
  96. 96.
    Karantalis V, Balkan W, Schulman IH, Hatzistergos KE, Hare JM (2012) Cell-based therapy for prevention and reversal of myocardial remodeling. Am J Physiol Heart Circ Physiol 303:H256–H270PubMedPubMedCentralGoogle Scholar
  97. 97.
    Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34 + -derived and monocyte-derived dendritic cells. J Immunol 177:2080–2087PubMedGoogle Scholar
  98. 98.
    Melief SM, Schrama E, Brugman MH, Tiemessen MM, Hoogduijn MJ, Fibbe WE, Roelofs H (2013) Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells 31:1980–1991PubMedGoogle Scholar
  99. 99.
    Melief SM, Geutskens SB, Fibbe WE, Roelofs H (2013) Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica 98:888–895PubMedPubMedCentralGoogle Scholar
  100. 100.
    Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49PubMedGoogle Scholar
  101. 101.
    Dayan V, Yannarelli G, Billia F, Filomeno P, Wang XH, Davies JE, Keating A (2011) Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol 106:1299–1310PubMedGoogle Scholar
  102. 102.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736PubMedGoogle Scholar
  103. 103.
    Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402PubMedGoogle Scholar
  104. 104.
    Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219PubMedGoogle Scholar
  105. 105.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedGoogle Scholar
  106. 106.
    Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48PubMedGoogle Scholar
  107. 107.
    Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827PubMedPubMedCentralGoogle Scholar
  108. 108.
    Kim YM, Jeon ES, Kim MR, Jho SK, Ryu SW, Kim JH (2008) Angiotensin II-induced differentiation of adipose tissue-derived mesenchymal stem cells to smooth muscle-like cells. Int J Biochem Cell Biol 40:2482–2491PubMedGoogle Scholar
  109. 109.
    Lockman K, Hinson JS, Medlin MD, Morris D, Taylor JM, Mack CP (2004) Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. J Biol Chem 279:42422–42430PubMedGoogle Scholar
  110. 110.
    Kim MR, Jeon ES, Kim YM, Lee JS, Kim JH (2009) Thromboxane a(2) induces differentiation of human mesenchymal stem cells to smooth muscle-like cells. Stem Cells 27:191–199PubMedGoogle Scholar
  111. 111.
    Elcin AE, Parmaksiz M, Dogan A, Seker S, Durkut S, Dalva K, Elcin YM (2017) Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFbeta1/BMP4. Exp Cell Res 352:207–217PubMedGoogle Scholar
  112. 112.
    Guo X, Stice SL, Boyd NL, Chen SY (2013) A novel in vitro model system for smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. Am J Physiol Cell Physiol 304:C289–C298PubMedGoogle Scholar
  113. 113.
    Grainger DJ, Metcalfe JC, Grace AA, Mosedale DE (1998) Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo. J Cell Sci 111(Pt 19):2977–2988PubMedGoogle Scholar
  114. 114.
    Yamazaki T, Nalbandian A, Uchida Y, Li WL, Arnold TD, Kubota Y, Yamamoto S, Ema M, Mukouyama YS (2017) Tissue myeloid progenitors differentiate into pericytes through TGF-beta signaling in developing skin vasculature. Cell Rep 18:2991–3004PubMedPubMedCentralGoogle Scholar
  115. 115.
    Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Bae YC, Jung JS, Kim JH (2006) Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. J Cell Sci 119:4994–5005PubMedGoogle Scholar
  116. 116.
    Wang C, Yin S, Cen L, Liu Q, Liu W, Cao Y, Cui L (2010) Differentiation of adipose-derived stem cells into contractile smooth muscle cells induced by transforming growth factor-beta1 and bone morphogenetic protein-4. Tissue Eng Part A 16:1201–1213PubMedGoogle Scholar
  117. 117.
    Kothapalli CR, Taylor PM, Smolenski RT, Yacoub MH, Ramamurthi A (2009) Transforming growth factor beta 1 and hyaluronan oligomers synergistically enhance elastin matrix regeneration by vascular smooth muscle cells. Tissue Eng Part A 15:501–511PubMedGoogle Scholar
  118. 118.
    Poliseno L, Cecchettini A, Mariani L, Evangelista M, Ricci F, Giorgi F, Citti L, Rainaldi G (2006) Resting smooth muscle cells as a model for studying vascular cell activation. Tissue Cell 38:111–120PubMedGoogle Scholar
  119. 119.
    Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC, Isakson B, Randolph GJ, Owens GK (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21:628–637PubMedPubMedCentralGoogle Scholar
  120. 120.
    Han CI, Campbell GR, Campbell JH (2001) Circulating bone marrow cells can contribute to neointimal formation. J Vasc Res 38(2):113–119PubMedGoogle Scholar
  121. 121.
    Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, Mitchell RN (2001) Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Nat Med 7(6):738–741PubMedGoogle Scholar
  122. 122.
    Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8(4):403–409PubMedGoogle Scholar
  123. 123.
    Hu Y, Davison F, Ludewig B, Erdel M, Mayr M, Url M, Dietrich H, Xu Q (2002) Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation 106(14):1834–1839PubMedGoogle Scholar
  124. 124.
    Li G, Chen SJ, Oparil S, Chen YF, Thompson JA (2000) Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 101(12):1362–1365PubMedGoogle Scholar
  125. 125.
    Wanjare M, Kuo F, Gerecht S (2013) Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells. Cardiovasc Res 97:321–330PubMedGoogle Scholar
  126. 126.
    Steinbach SK, El-Mounayri O, DaCosta RS, Frontini MJ, Nong Z, Maeda A, Pickering JG, Miller FD, Husain M (2011) Directed differentiation of skin-derived precursors into functional vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 31:2938–2948PubMedGoogle Scholar
  127. 127.
    Tamama K, Sen CK, Wells A (2008) Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev 17:897–908PubMedPubMedCentralGoogle Scholar
  128. 128.
    Gong Z, Calkins G, Cheng EC, Krause D, Niklason LE (2009) Influence of culture medium on smooth muscle cell differentiation from human bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 15:319–330PubMedGoogle Scholar
  129. 129.
    Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:705–710PubMedPubMedCentralGoogle Scholar
  130. 130.
    Boucher JM, Peterson SM, Urs S, Zhang C, Liaw L (2011) The miR-143/145 cluster is a novel transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. J Biol Chem 286:28312–28321PubMedPubMedCentralGoogle Scholar
  131. 131.
    Gays D, Hess C, Camporeale A, Ala U, Provero P, Mosimann C, Santoro MM (2017) An exclusive cellular and molecular network governs intestinal smooth muscle cell differentiation in vertebrates. Development 144:464–478PubMedGoogle Scholar
  132. 132.
    Long X, Miano JM (2011) Transforming growth factor-beta1 (TGF-beta1) utilizes distinct pathways for the transcriptional activation of microRNA 143/145 in human coronary artery smooth muscle cells. J Biol Chem 286:30119–30129PubMedPubMedCentralGoogle Scholar
  133. 133.
    Hu H, Xu Z, Li C, Xu C, Lei Z, Zhang HT, Zhao J (2016) MiR-145 and miR-203 represses TGF-beta-induced epithelial-mesenchymal transition and invasion by inhibiting SMAD3 in non-small cell lung cancer cells. Lung Cancer 97:87–94PubMedGoogle Scholar
  134. 134.
    Li E, Zhang J, Yuan T, Ma B (2014) MiR-145 inhibits osteosarcoma cells proliferation and invasion by targeting ROCK1. Tumour Biol 35:7645–7650PubMedGoogle Scholar
  135. 135.
    Psaltis PJ, Simari RD (2015) Vascular wall progenitor cells in health and disease. Circ Res 116:1392–1412PubMedGoogle Scholar
  136. 136.
    Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397PubMedPubMedCentralGoogle Scholar
  137. 137.
    Ghigo C, Mondor I, Jorquera A, Nowak J, Wienert S, Zahner SP, Clausen BE, Luche H, Malissen B, Klauschen F, Bajenoff M (2013) Multicolor fate mapping of Langerhans cell homeostasis. J Exp Med 210:1657–1664PubMedPubMedCentralGoogle Scholar
  138. 138.
    Gentek R, Molawi K, Sieweke MH (2014) Tissue macrophage identity and self-renewal. Immunol Rev 262:56–73PubMedGoogle Scholar
  139. 139.
    Psaltis PJ, Harbuzariu A, Delacroix S, Witt TA, Holroyd EW, Spoon DB, Hoffman SJ, Pan S, Kleppe LS, Mueske CS, Gulati R, Sandhu GS, Simari RD (2012) Identification of a monocyte-predisposed hierarchy of hematopoietic progenitor cells in the adventitia of postnatal murine aorta. Circulation 125:592–603PubMedGoogle Scholar
  140. 140.
    Psaltis PJ, Puranik AS, Spoon DB, Chue CD, Hoffman SJ, Witt TA, Delacroix S, Kleppe LS, Mueske CS, Pan S, Gulati R, Simari RD (2014) Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature. Circ Res 115:364–375PubMedGoogle Scholar
  141. 141.
    Spaggiari GM, Moretta L (2013) Cellular and molecular interactions of mesenchymal stem cells in innate immunity. Immunol Cell Biol 91:27–31PubMedGoogle Scholar
  142. 142.
    Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong MH, Yoon SH, Kim YS, Ahn Y (2014) Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46:e70PubMedPubMedCentralGoogle Scholar
  143. 143.
    Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453PubMedPubMedCentralGoogle Scholar
  144. 144.
    Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, Costa H, Canones C, Raiden S, Vermeulen M, Geffner JR (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5:e9252PubMedPubMedCentralGoogle Scholar
  145. 145.
    Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28:1856–1868PubMedPubMedCentralGoogle Scholar
  146. 146.
    Tsubakimoto Y, Yamada H, Yokoi H, Kishida S, Takata H, Kawahito H, Matsui A, Urao N, Nozawa Y, Hirai H, Imanishi J, Ashihara E, Maekawa T, Takahashi T, Okigaki M, Matsubara H (2009) Bone marrow angiotensin AT1 receptor regulates differentiation of monocyte lineage progenitors from hematopoietic stem cells. Arterioscler Thromb Vasc Biol 29:1529–1536PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of CardiologyThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityZhejiangChina
  2. 2.School of Cardiovascular Medicine and SciencesKing’s BHF CentreLondonUK

Personalised recommendations