Skip to main content
Log in

Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtDNA

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Heteroplasmic cells, harboring both mutant and normal mitochondrial DNAs (mtDNAs), must accumulate mutations to a threshold level before respiratory activity is affected. This phenomenon has led to the hypothesis of mtDNA complementation by inter-mitochondrial content mixing. The precise mechanisms of heteroplasmic complementation are unknown, but it depends both on the mtDNA nucleoid dynamics among mitochondria as well as the mitochondrial dynamics as influenced by mtDNA. We tracked nucleoids among the mitochondria in real time to show that they are shared after complete fusion but not ‘kiss-and-run’. Employing a cell hybrid model, we further show that mtDNA-less mitochondria, which have little ATP production and extensive Opa1 proteolytic cleavage, exhibit weak fusion activity among themselves, yet remain competent in fusing with healthy mitochondria in a mitofusin- and OPA1-dependent manner, resulting in restoration of metabolic function. Depletion of mtDNA by overexpression of the matrix-targeted nuclease UL12.5 resulted in heterogeneous mitochondrial membrane potential (ΔΨm) at the organelle level in mitofusin-null cells but not in wild type. In this system, overexpression of mitofusins or application of the fusion-promoting drug M1 could partially rescue the metabolic damage caused by UL12.5. Interestingly, mtDNA transcription/translation is not required for normal mitochondria to restore metabolic function to mtDNA-less mitochondria by fusion. Thus, interplay between mtDNA and fusion capacity governs a novel ‘initial metabolic complementation’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cap:

Chloramphenicol

DMEM:

Dulbecco’s modified Eagle’s medium

EB:

Ethidium bromide

FBS:

Fetal bovine serum

FI:

Fluorescence intensity

IMM:

Inner mitochondrial membrane

KFP:

Kindling fluorescent protein

MEF:

Mouse embryonic fibroblast

mt:

Mitochondrial

mtFP:

Mitochondrial matrix-targeting fluorescent protein

mtDNAs:

Mitochondrial DNAs

OMM:

Outer mitochondrial membrane

PAGFP:

Photoactivatable green fluorescent protein

PBS:

Phosphate-buffered saline

PEG:

Polyethylene glycol

Q-PCR:

Quantitative polymerase chain reaction. Rho0 cells: cells lacking mtDNA

Tfam:

Mitochondrial transcription factor A

TMRM:

Tetramethylrhodamine methyl ester

VK3:

Vitamin K3

WT:

Wild type

ΔΨm:

Mitochondrial membrane potential

References

  1. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  2. Greaves LC, Reeve AK, Taylor RW, Turnbull DM (2012) Mitochondrial DNA and disease. J Pathol 226:274–286. doi:10.1002/path.3028

    Article  CAS  PubMed  Google Scholar 

  3. Schapira AH (2012) Mitochondrial diseases. Lancet 379:1825–1834. doi:10.1016/S0140-6736(11)61305-6

    Article  CAS  PubMed  Google Scholar 

  4. Leonard JV, Schapira AH (2000) Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet 355:299–304

    Article  CAS  PubMed  Google Scholar 

  5. Lightowlers RN, Chinnery PF, Turnbull DM, Howell N (1997) Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 13:450–455

    Article  CAS  PubMed  Google Scholar 

  6. Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T (2003) Mitochondrial threshold effects. Biochem J 370:751–762. doi:10.1042/BJ20021594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chomyn A (1998) The myoclonic epilepsy and ragged-red fiber mutation provides new insights into human mitochondrial function and genetics. Am J Hum Genet 62:745–751. doi:10.1086/301813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Nakada K, Inoue K, Ono T, Isobe K, Ogura A, Goto YI, Nonaka I, Hayashi JI (2001) Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med 7:934–940. doi:10.1038/90976

    Article  CAS  PubMed  Google Scholar 

  9. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877. doi:10.1126/science.1074952

    Article  CAS  PubMed  Google Scholar 

  10. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656. doi:10.1073/pnas.202320599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21:191–194. doi:10.1038/nbt778

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Weaver D, Shirihai O, Hajnoczky G (2009) Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion-fission dynamics. EMBO J 28:3074–3089. doi:10.1038/emboj.2009.255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252. doi:10.1016/j.cell.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  14. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560. doi:10.1016/j.cub.2006.06.054

    Article  CAS  PubMed  Google Scholar 

  15. Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314. doi:10.1038/sj.emboj.7601972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Liu X, Hajnoczky G (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ 18:1561–1572. doi:10.1038/cdd.2011.13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590. doi:10.1101/gad.1658508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Twig G, Liu X, Liesa M, Wikstrom JD, Molina AJ, Las G, Yaniv G, Hajnoczky G, Shirihai OS (2010) Biophysical properties of mitochondrial fusion events in pancreatic beta-cells and cardiac cells unravel potential control mechanisms of its selectivity. Am J Physiol Cell Physiol 299:C477–C487. doi:10.1152/ajpcell.00427.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446. doi:10.1038/sj.emboj.7601963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Legros F, Malka F, Frachon P, Lombes A, Rojo M (2004) Organization and dynamics of human mitochondrial DNA. J Cell Sci 117:2653–2662. doi:10.1242/jcs.01134

    Article  CAS  PubMed  Google Scholar 

  21. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192. doi:10.1074/jbc.M503062200

    Article  CAS  PubMed  Google Scholar 

  22. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–289. doi:10.1016/j.cell.2010.02.026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Nakada K, Sato A, Hayashi J (2009) Mitochondrial functional complementation in mitochondrial DNA-based diseases. Int J Biochem Cell Biol 41:1907–1913. doi:10.1016/j.biocel.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  24. Enriquez JA, Cabezas-Herrera J, Bayona-Bafaluy MP, Attardi G (2000) Very rare complementation between mitochondria carrying different mitochondrial DNA mutations points to intrinsic genetic autonomy of the organelles in cultured human cells. J Biol Chem 275:11207–11215

    Article  CAS  PubMed  Google Scholar 

  25. Yoneda M, Miyatake T, Attardi G (1994) Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol Cell Biol 14:2699–2712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ono T, Isobe K, Nakada K, Hayashi JI (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28:272–275. doi:10.1038/90116

    Article  CAS  PubMed  Google Scholar 

  27. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20:3525–3532. doi:10.1091/mbc.E09-03-0252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke I, Merkwirth C, Ehses S, Krause F, Chan DC, Alexander C, Bauer C, Youle R, Langer T, Martinou JC (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28:1589–1600. doi:10.1038/emboj.2009.89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Legros F, Lombes A, Frachon P, Rojo M (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13:4343–4354. doi:10.1091/mbc.E02-06-0330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Baricault L, Segui B, Guegand L, Olichon A, Valette A, Larminat F, Lenaers G (2007) OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp Cell Res 313:3800–3808. doi:10.1016/j.yexcr.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  31. Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25:2966–2977. doi:10.1038/sj.emboj.7601184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A, Hansson A, Chomyn A, Bauer MF, Attardi G, Larsson NG, Neupert W, Reichert AS (2006) Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 281:37972–37979. doi:10.1074/jbc.M606059200

    Article  CAS  PubMed  Google Scholar 

  33. Song Z, Chen H, Fiket M, Alexander C, Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178:749–755. doi:10.1083/jcb.200704110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B, Faivre L, Lenaers G, Belenguer P, Hamel CP (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109:584–591. doi:10.1007/s00439-001-0633-y

    Article  CAS  PubMed  Google Scholar 

  35. Gilkerson RW, Schon EA, Hernandez E, Davidson MM (2008) Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J Cell Biol 181:1117–1128. doi:10.1083/jcb.200712101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Corcoran JA, Saffran HA, Duguay BA, Smiley JR (2009) Herpes simplex virus UL12.5 targets mitochondria through a mitochondrial localization sequence proximal to the N terminus. J Virol 83:2601–2610. doi:10.1128/JVI.02087-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887. doi:10.1016/j.cell.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  38. Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167:661–672. doi:10.1083/jcb.200406038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200. doi:10.1083/jcb.200211046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Santel A, Frank S, Gaume B, Herrler M, Youle RJ, Fuller MT (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116:2763–2774. doi:10.1242/jcs.00479

    Article  CAS  PubMed  Google Scholar 

  41. Wang D, Wang J, Bonamy GM, Meeusen S, Brusch RG, Turk C, Yang P, Schultz PG (2012) A small molecule promotes mitochondrial fusion in mammalian cells. Angew Chem Int Ed Engl 51:9302–9305. doi:10.1002/anie.201204589

    Article  CAS  PubMed  Google Scholar 

  42. Jacobs HT, Lehtinen SK, Spelbrink JN (2000) No sex please, we’re mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA. BioEssays 22:564–572. doi:10.1002/(SICI)1521-1878(200006)22:6<564:AID-BIES9>3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  43. D’Aurelio M, Gajewski CD, Lin MT, Mauck WM, Shao LZ, Lenaz G, Moraes CT, Manfredi G (2004) Heterologous mitochondrial DNA recombination in human cells. Hum Mol Genet 13:3171–3179. doi:10.1093/hmg/ddh326

    Article  PubMed  Google Scholar 

  44. Okamoto K, Perlman PS, Butow RA (1998) The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J Cell Biol 142:613–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. He J, Cooper HM, Reyes A, Di Re M, Sembongi H, Litwin TR, Gao J, Neuman KC, Fearnley IM, Spinazzola A, Walker JE, Holt IJ (2012) Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res 40:6109–6121. doi:10.1093/nar/gks266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hongwen Pang for his technical advice and Prof. György Hajnóczky, Prof. Xiaodong Shu, Dr. Juan Du, and Dr. Shen Chen for their expert views on the manuscript. This work was financially supported by the ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences (XDA01020108), the Ministry of Science and Technology 973 program (2013CB967403 and 2012CB721105), the Ministry of Science and Technology 863 Program (2012AA02A708), the National Natural Science Foundation projects of China (31271527), International Cooperation Project of Guangdong Science and Technology Program (2012B050300022), Guangzhou Science and Technology Program (2014Y2-00161), Guangdong Natural Science Foundation for Distinguished Young Scientists (S20120011368), and the “One hundred Talents” Project for Prof. Xingguo Liu from the Chinese Academy of Sciences.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 mtDNA nucleoids are shared after complete fusion but not ‘kiss-and-run’ in HeLa cells. a Tfam-DsRed co-localizes with anti-mtDNA fluorescence (Scale bar: 2 μm). b Quantitation of mtDNA nucleoid number after overexpressing Tfam-DsRed or mtDsRed in HeLa cells by Anti-DNA immunofluorescence (UT, Untreated). c Time course of mtDNA nucleoid movement during ‘kiss-and-run’ events after PAGFP photoactivation (Scale bar: 1 μm). The graph shows an increase of PAGFP FI in the acceptor mitochondrion (#1). d Time course of a typical mtDNA nucleoids sharing events in HeLa cells by mitochondrial complete fusion as determined by photoactivation (Scale bar: 1 μm). e The percentage of mtDNA nucleoid sharing events that occurred during ‘kiss-and-run’ events per 466.4 s imaging interval (n≥17). #, p < 0.01

Fig. S2 Acquisition of mtDNA nucleoids by mtDNA-less mitochondria by fusion events in Rho0 cells. a b The identification of Rho0 Hela cells. a The protein expression level of Tfam in WT and Rho cells. b Relative levels of Cox1 and Cox2 mtRNA in WT and Rho0 cells. c Time course of a typical mitochondrial fusion event in Rho0 cells (Scale bar: 1 μm). The graph shows an increase of PAGFP FI in the acceptor mitochondrion (#1). d e The heteroplasmic fusion between mtDNA-less and normal mitochondria by PEG-induced cell fusion. d Anti-DNA and anti-Tfam immunofluorescence of Rho0 and WT cells (Scale bar: 10 μm). e Anti-DNA and Anti-Tfam immunofluorescence of WT × Rho0 (mtDsRed) cell hybrids after PEG-mediated cell fusion for 7 h (Scale bar: 10 μm)

Fig. S3 OMM fusion frequency in Rho0 cells. a Labeling of a subpopulation of mitochondria by photoactivation of PAGFP in WT and Rho0 HeLa cells expressing both Omp25-PAGFP and mtDsRed (Scale bar: 10 μm). b OMM fusion was monitored by measuring the dilution of Omp25-PAGFP in subset for 200 s after photoactivation (n=5). c Comparison of OMM fusion events numbers in WT and Rho0 cells (n=5). #, p < 0.01

Fig. S4 Measurements of ΔΨm in WT and Rho0 HeLa cells and the generation of mouse Rho- cell lines by genetic approach. a Measurements of ΔΨm in WT and Rho0 by JC-1 staining (Scale bar: 10 μm). The ratio of red/green FI is used to measure ΔΨm. Rho0 cells had lower ratio, indicating lower ΔΨm than WT. b Measurements of ΔΨm in WT and Rho0 by TMRM staining (Scale bar: 10 μm). c Relative level of ND5 mtDNA in the days following infection with UL12.5-GFP. d Relative level of ND5 mtRNA in the days following infection with UL12.5-GFP. e Measurement of ΔΨm in MEF cells, Mfn1,2-/- MEF cells, and Opa1-/- MEF cells by TMRM staining (Scale bar: 10 μm)

Fig. S5 A single mtDNA-less mitochondrion gains a higher ΔΨm after fusing with a normal mitochondrion by ‘kiss-and-run’ (Scar bar 1 μm)

Fig. S6 Relative levels of Cox1/2 mtDNA in HeLa cells treated with 0.4 μg/mL EB for 48 h. #, p < 0.01

Fig. S7 Overexpression of Mfn1 or Mfn2 does affect neither mtDNA nor mtRNA levels. a Relative levels of ND2 and ND5 mtDNA in MEF cells after overexpression of Mfn1, Mfn2 or Mfn1/2 for 6 days. b Relative levels of ND2 and ND5 mtRNA in MEF cells after overexpression of Mfn1, Mfn2 or Mfn1/2 for 6 days

Supplementary material 1 (PDF 1614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Long, Q., Liu, J. et al. Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtDNA. Cell. Mol. Life Sci. 72, 2585–2598 (2015). https://doi.org/10.1007/s00018-015-1863-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1863-9

Keywords

Navigation