Cellular and Molecular Life Sciences

, Volume 72, Issue 12, pp 2415–2429 | Cite as

Protein composition and movements of membrane swellings associated with primary cilia

  • Ashraf M. Mohieldin
  • Hanan S. Haymour
  • Shao T. Lo
  • Wissam A. AbouAlaiwi
  • Kimberly F. Atkinson
  • Christopher J. Ward
  • Min Gao
  • Oliver Wessely
  • Surya M. NauliEmail author
Research Article


Dysfunction of many ciliary proteins has been linked to a list of diseases, from cystic kidney to obesity and from hypertension to mental retardation. We previously proposed that primary cilia are unique communication organelles that function as microsensory compartments that house mechanosensory molecules. Here we report that primary cilia exhibit membrane swellings or ciliary bulbs, which based on their unique ultrastructure and motility, could be mechanically regulated by fluid-shear stress. Together with the ultrastructure analysis of the swelling, which contains monosialodihexosylganglioside (GM3), our results show that ciliary bulb has a distinctive set of functional proteins, including GM3 synthase (GM3S), bicaudal-c1 (Bicc1), and polycystin-2 (PC2). In fact, results from our cilia isolation demonstrated for the first time that GM3S and Bicc1 are members of the primary cilia proteins. Although these proteins are not required for ciliary membrane swelling formation under static condition, fluid-shear stress induced swelling formation is partially modulated by GM3S. We therefore propose that the ciliary bulb exhibits a sensory function within the mechano-ciliary structure. Overall, our studies provided an important step towards understanding the ciliary bulb function and structure.


Primary cilia Ciliary bulb Ciliary membrane swelling Fluid-shear stress Bicc-1 GM3S PC2 



This work partially fulfills the requirements of a PhD degree in Medicinal and Biological Chemistry for Ashraf M. Mohieldin. This work was supported by the Department of Defense PR130153 (SMN) and in part by the National Institute of Health R01DK080640 (SMN), R01DK080745 (OW) and F31DK096870 (AMM).

Supplementary material

18_2015_1838_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 26 kb)
18_2015_1838_MOESM2_ESM.tif (5.9 mb)
Supplementary material 2 (TIFF 6077 kb)
18_2015_1838_MOESM3_ESM.tif (5.9 mb)
Supplementary material 3 (TIFF 6077 kb)
18_2015_1838_MOESM4_ESM.tif (5.9 mb)
Supplementary material 4 (TIFF 6077 kb)
18_2015_1838_MOESM5_ESM.tif (5.9 mb)
Supplementary material 5 (TIFF 6077 kb)
18_2015_1838_MOESM6_ESM.tif (5.9 mb)
Supplementary material 6 (TIFF 6077 kb) (989 kb)
Supplementary material 7 (MOV 988 kb)

Supplementary material 8 (AVI 553 kb)

Supplementary material 9 (AVI 1498 kb)


  1. 1.
    Zimmermann K (1898) Beiträge zur Kenntnis einiger Drüsen und Epithelien. Arch Mikroskop Anat 52:552–706CrossRefGoogle Scholar
  2. 2.
    Tobin JL, Beales PL (2009) The nonmotile ciliopathies. Genetics Med 11(6):386–402. doi: 10.1097/GIM.0b013e3181a02882 CrossRefGoogle Scholar
  3. 3.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33(2):129–137. doi: 10.1038/ng1076 CrossRefPubMedGoogle Scholar
  4. 4.
    Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117(9):1161–1171. doi: 10.1161/CIRCULATIONAHA.107.710111 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184(1):71–79CrossRefPubMedGoogle Scholar
  6. 6.
    Jin X, Mohieldin AM, Muntean BS, Green JA, Shah JV, Mykytyn K, Nauli SM (2014) Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell Mol Life Sci 71(11):2165–2178. doi: 10.1007/s00018-013-1483-1 CrossRefPubMedGoogle Scholar
  7. 7.
    Aboualaiwi WA, Muntean BS, Ratnam S, Joe B, Liu L, Booth RL, Rodriguez I, Herbert BS, Bacallao RL, Fruttiger M, Mak TW, Zhou J, Nauli SM (2014) Survivin-induced abnormal ploidy contributes to cystic kidney and aneurysm formation. Circulation 129(6):660–672. doi: 10.1161/CIRCULATIONAHA.113.005746 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104(7):860–869. doi: 10.1161/CIRCRESAHA.108.192765 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Takaoki M, Murakami N, Gyotoku J (2004) C-fos expression of osteoblast-like MC3T3-E1 cells induced either by cooling or by fluid flow. Uchu Seibutsu Kagaku 18(3):181–182PubMedGoogle Scholar
  10. 10.
    McGlashan SR, Haycraft CJ, Jensen CG, Yoder BK, Poole CA (2007) Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biol 26(4):234–246. doi: 10.1016/j.matbio.2006.12.003 CrossRefPubMedGoogle Scholar
  11. 11.
    Jensen CG, Poole CA, McGlashan SR, Marko M, Issa ZI, Vujcich KV, Bowser SS (2004) Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol Int 28(2):101–110. doi: 10.1016/j.cellbi.2003.11.007 CrossRefPubMedGoogle Scholar
  12. 12.
    Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006) Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131(3):911–920. doi: 10.1053/j.gastro.2006.07.003 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Yoshiba S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K, Nonaka S, Asai Y, Sasaki G, Belo JA, Sasaki H, Nakai J, Dworniczak B, Ehrlich BE, Pennekamp P, Hamada H (2012) Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338(6104):226–231. doi: 10.1126/science.1222538 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114(1):61–73CrossRefPubMedGoogle Scholar
  15. 15.
    Su S, Phua SC, DeRose R, Chiba S, Narita K, Kalugin PN, Katada T, Kontani K, Takeda S, Inoue T (2013) Genetically encoded calcium indicator illuminates calcium dynamics in primary cilia. Nat Methods 10(11):1105–1107. doi: 10.1038/nmeth.2647 CrossRefPubMedGoogle Scholar
  16. 16.
    Rydholm S, Zwartz G, Kowalewski JM, Kamali-Zare P, Frisk T, Brismar H (2010) Mechanical properties of primary cilia regulate the response to fluid flow. Am J Physiol Renal Physiol 298(5):F1096–F1102. doi: 10.1152/ajprenal.00657.2009 CrossRefPubMedGoogle Scholar
  17. 17.
    Xu C, Rossetti S, Jiang L, Harris PC, Brown-Glaberman U, Wandinger-Ness A, Bacallao R, Alper SL (2007) Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+signaling. Am J Physiol Renal Physiol 292(3):F930–F945. doi: 10.1152/ajprenal.00285.2006 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Nauli SM, Rossetti S, Kolb RJ, Alenghat FJ, Consugar MB, Harris PC, Ingber DE, Loghman-Adham M, Zhou J (2006) Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. J Am Soc Nephrol 17(4):1015–1025. doi: 10.1681/ASN.2005080830 CrossRefPubMedGoogle Scholar
  19. 19.
    Siroky BJ, Ferguson WB, Fuson AL, Xie Y, Fintha A, Komlosi P, Yoder BK, Schwiebert EM, Guay-Woodford LM, Bell PD (2006) Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells. Am J Physiol Renal Physiol 290(6):F1320–F1328. doi: 10.1152/ajprenal.00463.2005 CrossRefPubMedGoogle Scholar
  20. 20.
    Liu W, Murcia NS, Duan Y, Weinbaum S, Yoder BK, Schwiebert E, Satlin LM (2005) Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol 289(5):F978–F988. doi: 10.1152/ajprenal.00260.2004 CrossRefPubMedGoogle Scholar
  21. 21.
    Cano DA, Sekine S, Hebrok M (2006) Primary cilia deletion in pancreatic epithelial cells results in cyst formation and pancreatitis. Gastroenterology 131(6):1856–1869. doi: 10.1053/j.gastro.2006.10.050 CrossRefPubMedGoogle Scholar
  22. 22.
    Cano DA, Murcia NS, Pazour GJ, Hebrok M (2004) Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 131(14):3457–3467. doi: 10.1242/dev.01189 CrossRefPubMedGoogle Scholar
  23. 23.
    Hoey DA, Tormey S, Ramcharan S, O’Brien FJ, Jacobs CR (2012) Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells 30(11):2561–2570. doi: 10.1002/stem.1235 CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Gilula NB, Satir P (1972) The ciliary necklace. A ciliary membrane specialization. J Cell Biol 53(2):494–509CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Dilly PN (1977) Further observations of transport within paddle cilia. Cell Tissue Res 185(1):105–113CrossRefPubMedGoogle Scholar
  26. 26.
    Dilly PN (1977) Material transport within specialised ciliary shafts on Rhabdopleura zooids. Cell Tissue Res 180(3):367–381CrossRefPubMedGoogle Scholar
  27. 27.
    Beninger PG, Potter TM, Stjean SD (1995) Paddle cilia fixation artifacts in pallial organs of adult Mytilus edulis and Placopecten magennanicus. Canadian J Zool 73:610–614CrossRefGoogle Scholar
  28. 28.
    Short G, Tamm SL (1991) On the nature of paddle cilia and discocilia. Biol Bull 180:466–474CrossRefGoogle Scholar
  29. 29.
    Menco BP, Farbman AI (1985) Genesis of cilia and microvilli of rat nasal epithelia during pre-natal development. II. Olfactory epithelium, a morphometric analysis. J Cell Sci 78:311–336PubMedGoogle Scholar
  30. 30.
    Menco BP, Farbman AI (1985) Genesis of cilia and microvilli of rat nasal epithelia during pre-natal development. I. Olfactory epithelium, qualitative studies. J Cell Sci 78:283–310PubMedGoogle Scholar
  31. 31.
    Holley A, Mac Leod P (1977) Transduction and coding of olfactory information. Journal de physiologie 73(6):725–848PubMedGoogle Scholar
  32. 32.
    Roth KE, Rieder CL, Bowser SS (1988) Flexible-substratum technique for viewing cells from the side: some in vivo properties of primary (9 + 0) cilia in cultured kidney epithelia. J Cell Sci 89(Pt 4):457–466PubMedGoogle Scholar
  33. 33.
    Janich P, Corbeil D (2007) GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett 581(9):1783–1787. doi: 10.1016/j.febslet.2007.03.065 CrossRefPubMedGoogle Scholar
  34. 34.
    Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13(10):2508–2516CrossRefPubMedGoogle Scholar
  35. 35.
    Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12(11):R378–R380CrossRefPubMedGoogle Scholar
  36. 36.
    Tran U, Zakin L, Schweickert A, Agrawal R, Doger R, Blum M, De Robertis EM, Wessely O (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137(7):1107–1116. doi: 10.1242/dev.046045 CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Mitchell KA (2013) Isolation of primary cilia by shear force. Current protocols in cell biology/editorial board, Juan S Bonifacino [et al] Chapter 3:Unit 3 42 41–49. doi: 10.1002/0471143030.cb0342s59
  38. 38.
    Berselli P, Zava S, Sottocornola E, Milani S, Berra B, Colombo I (2006) Human GM3 synthase: a new mRNA variant encodes an NH2-terminal extended form of the protein. Biochim Biophys Acta 1759(7):348–358. doi: 10.1016/j.bbaexp.2006.07.001 CrossRefPubMedGoogle Scholar
  39. 39.
    Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4(3):191–197. doi: 10.1038/ncb754 CrossRefPubMedGoogle Scholar
  40. 40.
    Elofsson R, Andersson A, Falck B, Sjoborg S (1984) The ciliated human keratinocyte. J Ultrastruct Res 87(3):212–220CrossRefPubMedGoogle Scholar
  41. 41.
    Dalen H (1981) An ultrastructural study of primary cilia, abnormal cilia and ciliary knobs from the ciliated cells of the guinea-pig trachea. Cell Tissue Res 220(4):685–697CrossRefPubMedGoogle Scholar
  42. 42.
    Albrecht-Buehler G, Bushnell A (1980) The ultrastructure of primary cilia in quiescent 3T3 cells. Exp Cell Res 126(2):427–437CrossRefPubMedGoogle Scholar
  43. 43.
    Jensen CG, Davison EA, Bowser SS, Rieder CL (1987) Primary cilia cycle in PtK1 cells: effects of colcemid and taxol on cilia formation and resorption. Cell Motil Cytoskelet 7(3):187–197. doi: 10.1002/cm.970070302 CrossRefGoogle Scholar
  44. 44.
    Jensen CG, Jensen LC, Rieder CL (1979) The occurrence and structure of primary cilia in a subline of Potorous tridactylus. Exp Cell Res 123(2):444–449CrossRefPubMedGoogle Scholar
  45. 45.
    Wood CR, Huang K, Diener DR, Rosenbaum JL (2013) The cilium secretes bioactive ectosomes. Curr Biol 23(10):906–911. doi: 10.1016/j.cub.2013.04.019 CrossRefPubMedGoogle Scholar
  46. 46.
    Hogan MC, Manganelli L, Woollard JR, Masyuk AI, Masyuk TV, Tammachote R, Huang BQ, Leontovich AA, Beito TG, Madden BJ, Charlesworth MC, Torres VE, LaRusso NF, Harris PC, Ward CJ (2009) Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol 20(2):278–288. doi: 10.1681/ASN.2008060564 CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Wang J, Silva M, Haas LA, Morsci NS, Nguyen KC, Hall DH, Barr MM (2014) C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr Biol 24(5):519–525. doi: 10.1016/j.cub.2014.01.002 CrossRefPubMedGoogle Scholar
  48. 48.
    Kaimori JY, Nagasawa Y, Menezes LF, Garcia-Gonzalez MA, Deng J, Imai E, Onuchic LF, Guay-Woodford LM, Germino GG (2007) Polyductin undergoes notch-like processing and regulated release from primary cilia. Hum Mol Genet 16(8):942–956. doi: 10.1093/hmg/ddm039 CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Hidaka S, Konecke V, Osten L, Witzgall R (2004) PIGEA-14, a novel coiled-coil protein affecting the intracellular distribution of polycystin-2. J Biol Chem 279(33):35009–35016. doi: 10.1074/jbc.M314206200 CrossRefPubMedGoogle Scholar
  50. 50.
    Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274(40):28557–28565CrossRefPubMedGoogle Scholar
  51. 51.
    Wang L, Eckmann CR, Kadyk LC, Wickens M, Kimble J (2002) A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 419(6904):312–316. doi: 10.1038/nature01039 CrossRefPubMedGoogle Scholar
  52. 52.
    Saffman EE, Styhler S, Rother K, Li W, Richard S, Lasko P (1998) Premature translation of oskar in oocytes lacking the RNA-binding protein bicaudal-C. Mol Cell Biol 18(8):4855–4862PubMedCentralPubMedGoogle Scholar
  53. 53.
    Mahone M, Saffman EE, Lasko PF (1995) Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1. EMBO J 14(9):2043–2055PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Ashraf M. Mohieldin
    • 1
    • 2
  • Hanan S. Haymour
    • 2
  • Shao T. Lo
    • 2
  • Wissam A. AbouAlaiwi
    • 2
  • Kimberly F. Atkinson
    • 3
  • Christopher J. Ward
    • 4
  • Min Gao
    • 5
  • Oliver Wessely
    • 6
  • Surya M. Nauli
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Medicinal and Biological ChemistryUniversity of ToledoToledoUSA
  2. 2.Department of Pharmacology and Experimental TherapeuticsUniversity of ToledoToledoUSA
  3. 3.Department of Biomedical and Pharmaceutical SciencesChapman UniversityIrvineUSA
  4. 4.Department of Medicine, The Kidney InstituteUniversity of Kansas Medical CenterKansasUSA
  5. 5.Liquid Crystal InstituteKent State UniversityKentUSA
  6. 6.Department of Cellular and Molecular Medicine, Lerner Research InstituteCleveland Clinic FoundationClevelandUSA

Personalised recommendations