Skip to main content

Advertisement

Log in

Smad7 enhances ATM activity by facilitating the interaction between ATM and Mre11-Rad50-Nbs1 complex in DNA double-strand break repair

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Genomic instability is one of the representative causes in genetic disorder, where the proper cellular response to DNA damage is essential in maintaining genomic stability. ATM and the Mre11-Rad50-Nbs1 (MRN) complex play critical roles in the cellular response to DNA damage such as DNA double-strand break (DSB). In this study, we report that Smad7 is indispensible in DNA damage response as a novel component of MRN complex. Smad7 enhances cell survival against DNA damage by accelerating ATM dependent DNA repair signaling. In Smad7-deficient mouse embryonic fibroblast cells, the loss of Smad7 decreases ATM activation and inhibits recruitment of ATM to the sites of DSBs. Smad7 interacts with Nbs1, a member of MRN complex, and enhances the interaction between ATM and Nbs1 upon DNA damage response, leading to phosphorylation of downstream substrates. Ectopic expression of Smad7 in the skin of mice enhances the phosphorylation of ATM upon X-irradiation. We found that effect of Smad7 on enhancing DNA repair is independent of its inhibitory activity of TGF-β signaling. Taken together, our results highlight a critical function of Smad7 in DSB response and establish the novel mechanism in which Smad7 facilitates the recruitment of ATM to the MRN complex through direct interaction with Nbs1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26(56):7773–7779. doi:10.1038/sj.onc.1210881

    Article  CAS  PubMed  Google Scholar 

  2. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228. doi:10.1038/nrm2858

    Article  CAS  PubMed  Google Scholar 

  3. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23(5):687–696

    Article  CAS  PubMed  Google Scholar 

  4. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323. doi:10.1038/nature03097

    Article  CAS  PubMed  Google Scholar 

  5. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9(10):759–769. doi:10.1038/nrm2514

    Article  CAS  PubMed  Google Scholar 

  6. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22(20):5612–5621. doi:10.1093/emboj/cdg541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Paull TT, Lee JH (2005) The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM. Cell Cycle 4(6):737–740

    Article  CAS  PubMed  Google Scholar 

  8. Ahn JY, Schwarz JK, Piwnica-Worms H, Canman CE (2000) Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60(21):5934–5936

    CAS  PubMed  Google Scholar 

  9. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506. doi:10.1038/nature01368

    Article  CAS  PubMed  Google Scholar 

  10. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467. doi:10.1074/jbc.C100466200

    Article  CAS  PubMed  Google Scholar 

  11. Derheimer FA, Kastan MB (2010) Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 584(17):3675–3681. doi:10.1016/j.febslet.2010.05.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF (2006) Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25(15):3504–3514. doi:10.1038/sj.emboj.7601231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318(5856):1637–1640. doi:10.1126/science.1150034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Itoh S, Landstrom M, Hermansson A, Itoh F, Heldin CH, Heldin NE, ten Dijke P (1998) Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J Biol Chem 273(44):29195–29201

    Article  CAS  PubMed  Google Scholar 

  15. Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, Han Y, Feng XH, Meng A, Chen YG (2007) Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol 27(12):4488–4499. doi:10.1128/MCB.01636-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhang S, Ekman M, Thakur N, Bu S, Davoodpour P, Grimsby S, Tagami S, Heldin CH, Landstrom M (2006) TGFbeta1-induced activation of ATM and p53 mediates apoptosis in a Smad7-dependent manner. Cell Cycle 5(23):2787–2795

    Article  CAS  PubMed  Google Scholar 

  17. Okado T, Terada Y, Tanaka H, Inoshita S, Nakao A, Sasaki S (2002) Smad7 mediates transforming growth factor-beta-induced apoptosis in mesangial cells. Kidney Int 62(4):1178–1186. doi:10.1111/j.1523-1755.2002.kid583.x

    Article  CAS  PubMed  Google Scholar 

  18. Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P, Gressner AM (2003) Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 125(1):178–191. doi:10.1016/s0016-5085(03)00666-8

    Article  CAS  PubMed  Google Scholar 

  19. Lan HY (2003) Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 14(6):1535–1548. doi:10.1097/01.asn.0000067632.04658.b8

    Article  CAS  PubMed  Google Scholar 

  20. Saika S, Ikeda K, Yamanaka O, Miyamoto T, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Nakajima Y, Kao WW, Flanders KC, Roberts AB (2005) Expression of Smad7 in mouse eyes accelerates healing of corneal tissue after exposure to alkali. Am J Pathol 166(5):1405–1418. doi:10.1016/S0002-9440(10)62358-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Han G, Li F, Ten Dijke P, Wang XJ (2011) Temporal smad7 transgene induction in mouse epidermis accelerates skin wound healing. Am J Pathol 179(4):1768–1779. doi:10.1016/j.ajpath.2011.06.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang M, Saha J, Hada M, Anderson JA, Pluth JM, O’Neill P, Cucinotta FA (2013) Novel Smad proteins localize to IR-induced double-strand breaks: interplay between TGFbeta and ATM pathways. Nucleic Acids Res 41(2):933–942. doi:10.1093/nar/gks1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lee JH, Kang Y, Khare V, Jin ZY, Kang MY, Yoon Y, Hyun JW, Chung MH, Cho SI, Jun JY, Chang IY, You HJ (2010) The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage. Oncogene 29(10):1431–1450. doi:10.1038/onc.2009.438

    Article  CAS  PubMed  Google Scholar 

  24. Noon AT, Shibata A, Rief N, Lobrich M, Stewart GS, Jeggo PA, Goodarzi AA (2010) 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 12(2):177–184. doi:10.1038/ncb2017

    Article  CAS  PubMed  Google Scholar 

  25. He W, Li AG, Wang D, Han S, Zheng B, Goumans MJ, Ten Dijke P, Wang XJ (2002) Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J 21(11):2580–2590. doi:10.1093/emboj/21.11.2580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Falanga V, Schrayer D, Cha J, Butmarc J, Carson P, Roberts AB, Kim SJ (2004) Full-thickness wounding of the mouse tail as a model for delayed wound healing: accelerated wound closure in Smad3 knock-out mice. Wound Repair Regen 12(3):320–326. doi:10.1111/j.1067-1927.2004.012316.x

    Article  PubMed  Google Scholar 

  27. Wiegman EM, Blaese MA, Loeffler H, Coppes RP, Rodemann HP (2007) TGFbeta-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGFbeta-receptor I signalling. Radiother Oncol 83(3):289–295. doi:10.1016/j.radonc.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  28. Cariveau MJ, Tang X, Cui XL, Xu B (2007) Characterization of an NBS1 C-terminal peptide that can inhibit ataxia telangiectasia mutated (ATM)-mediated DNA damage responses and enhance radiosensitivity. Mol Pharmacol 72(2):320–326. doi:10.1124/mol.107.036681

    Article  CAS  PubMed  Google Scholar 

  29. You Z, Chahwan C, Bailis J, Hunter T, Russell P (2005) ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25(13):5363–5379. doi:10.1128/MCB.25.13.5363-5379.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Perry J, Kleckner N (2003) The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 112(2):151–155

    Article  CAS  PubMed  Google Scholar 

  31. Han G, Bian L, Li F, Cotrim A, Wang D, Lu J, Deng Y, Bird G, Sowers A, Mitchell JB, Gutkind JS, Zhao R, Raben D, ten Dijke P, Refaeli Y, Zhang Q, Wang XJ (2013) Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat Med 19(4):421–428. doi:10.1038/nm.3118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hong S, Lee C, Kim SJ (2007) Smad7 sensitizes tumor necrosis factor induced apoptosis through the inhibition of antiapoptotic gene expression by suppressing activation of the nuclear factor-kappaB pathway. Cancer Res 67(19):9577–9583. doi:10.1158/0008-5472.CAN-07-1179

    Article  CAS  PubMed  Google Scholar 

  33. Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK, Park SH, Wang XJ, Kim SJ (2007) Smad7 binds to the adaptors TAB 2 and TAB 3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 8(5):504–513. doi:10.1038/ni1451

    Article  CAS  PubMed  Google Scholar 

  34. Simonsson M, Heldin CH, Ericsson J, Gronroos E (2005) The balance between acetylation and deacetylation controls Smad7 stability. J Biol Chem 280(23):21797–21803. doi:10.1074/jbc.M503134200

    Article  CAS  PubMed  Google Scholar 

  35. Gronroos E, Hellman U, Heldin CH, Ericsson J (2002) Control of Smad7 stability by competition between acetylation and ubiquitination. Mol Cell 10(3):483–493

    Article  CAS  PubMed  Google Scholar 

  36. Costanzo V, Paull T, Gottesman M, Gautier J (2004) Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol 2(5):E110. doi:10.1371/journal.pbio.0020110

    Article  PubMed Central  PubMed  Google Scholar 

  37. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308(5721):551–554. doi:10.1126/science.1108297

    Article  CAS  PubMed  Google Scholar 

  38. Lloyd J, Chapman JR, Clapperton JA, Haire LF, Hartsuiker E, Li J, Carr AM, Jackson SP, Smerdon SJ (2009) A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell 139(1):100–111. doi:10.1016/j.cell.2009.07.043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lee JH, Goodarzi AA, Jeggo PA, Paull TT (2010) 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO J 29(3):574–585. doi:10.1038/emboj.2009.372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wu J, Zhang X, Zhang L, Wu CY, Rezaeian AH, Chan CH, Li JM, Wang J, Gao Y, Han F, Jeong YS, Yuan X, Khanna KK, Jin J, Zeng YX, Lin HK (2012) Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1. Mol Cell 46(3):351–361. doi:10.1016/j.molcel.2012.02.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick AB, Lavin MJ, Koslov S, Shiloh Y, Barcellos-Hoff MH (2006) Inhibition of transforming growth factor-beta1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Res 66(22):10861–10869. doi:10.1158/0008-5472.CAN-06-2565

    Article  CAS  PubMed  Google Scholar 

  42. Dubrovska A, Kanamoto T, Lomnytska M, Heldin CH, Volodko N, Souchelnytskyi S (2005) TGFbeta1/Smad3 counteracts BRCA1-dependent repair of DNA damage. Oncogene 24(14):2289–2297. doi:10.1038/sj.onc.1208443

    Article  CAS  PubMed  Google Scholar 

  43. Kanamoto T, Hellman U, Heldin CH, Souchelnytskyi S (2002) Functional proteomics of transforming growth factor-beta1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFbeta1-dependent regulation of DNA repair. EMBO J 21(5):1219–1230. doi:10.1093/emboj/21.5.1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Chang J, Park K, Bang YJ, Kim WS, Kim D, Kim SJ (1997) Expression of transforming growth factor beta type II receptor reduces tumorigenicity in human gastric cancer cells. Cancer Res 57(14):2856–2859

    CAS  PubMed  Google Scholar 

  45. Han G, Li AG, Liang YY, Owens P, He W, Lu S, Yoshimatsu Y, Wang D, Ten Dijke P, Lin X, Wang XJ (2006) Smad7-induced beta-catenin degradation alters epidermal appendage development. Dev Cell 11(3):301–312. doi:10.1016/j.devcel.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  46. Xavier S, Piek E, Fujii M, Javelaud D, Mauviel A, Flanders KC, Samuni AM, Felici A, Reiss M, Yarkoni S, Sowers A, Mitchell JB, Roberts AB, Russo A (2004) Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone. J Biol Chem 279(15):15167–15176. doi:10.1074/jbc.M309798200

    Article  CAS  PubMed  Google Scholar 

  47. Monteleone G, Del Vecchio Blanco G, Palmieri G, Vavassori P, Monteleone I, Colantoni A, Battista S, Spagnoli LG, Romano M, Borrelli M, MacDonald TT, Pallone F (2004) Induction and regulation of Smad7 in the gastric mucosa of patients with Helicobacter pylori infection. Gastroenterology 126(3):674–682

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Wang, XJ for the K7.Smad7 transgenic mice and Yoon, K, Choi, CY, and Kim, TK for technical support. This work was supported by Basic Science Research Program (NRF 2011-0014281) and the Bio-Synergy Research Project (NRF-2012M3A9C4048735) of the Ministry of Science, ICT and Future Planning through the National Research Foundation of Korea (NRF).

Conflict of interest

All authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Jin Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Kang, J.M., Kim, S.J. et al. Smad7 enhances ATM activity by facilitating the interaction between ATM and Mre11-Rad50-Nbs1 complex in DNA double-strand break repair. Cell. Mol. Life Sci. 72, 583–596 (2015). https://doi.org/10.1007/s00018-014-1687-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1687-z

Keywords

Navigation