Skip to main content
Log in

Cooperative interactions between odorant-binding proteins of Anopheles gambiae

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

To understand olfactory discrimination in Anopheles gambiae, we made six purified recombinant OBPs and investigated their ligand-binding properties. All OBPs were expressed in bacteria with additional production of OBP47 in the yeast Kluveromyces lactis. Ligand-binding experiments, performed with a diverse set of organic compounds, revealed marked differences between the OBPs. Using the fluorescent probe N-phenyl-1-naphthylamine, we also measured the binding curves for binary mixtures of OBPs and obtained, in some cases, unexpected behaviour, which could only be explained by the OBPs forming heterodimers with binding characteristics different from those of the component proteins. This shows that OBPs in mosquitoes can form complexes with novel ligand specificities, thus amplifying the repertoire of OBPs and the number of semiochemicals that can be discriminated. Confirmation of the likely role of heterodimers was demonstrated by in situ hybridisation, suggesting that OBP1 and OBP4 are co-expressed in some antennal sensilla of A. gambiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

OBP:

Odorant-binding protein

MALDI-TOF:

Matrix-assisted laser desorption ionisation-time of flight

ESI-MS:

Electrospray ionisation mass spectrometry

FITC:

Phenyl-isothiocyanate

1-NPN:

N-phenyl-1-naphthylamine

References

  1. Justice RW, Dimitratos S, Walter MF, Woods DF, Biessmann H (2003) Sexual dimorphic expression of putative antennal carrier protein genes in the malaria vector Anopheles gambiae. Insect Mol Biol 12:581–594

    Article  PubMed  CAS  Google Scholar 

  2. Logan JG, Birkett MA (2007) Semiochemicals for biting fly control: their identification and exploitation. Pest Manag Sci 63:647–657

    Article  PubMed  CAS  Google Scholar 

  3. Logan JG, Birkett MA, Clark SJ, Powers S, Seal NJ, Wadhams LJ, Mordue Luntz AJ, Pickett JA (2008) Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes. J Chem Ecol 34:308–322

    Article  PubMed  CAS  Google Scholar 

  4. Corbel V, Stankiewicz M, Pennetier C, Fournier D, Stojan J, Girard E, Dimitrov M, Molgó J, Hougard JM, Lapied B (2009) Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC Biol 7:47

    Article  PubMed  Google Scholar 

  5. Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 14:4395–4400

    Article  Google Scholar 

  6. Chang KS, Tak JH, Kim SI, Lee WJ, Ahn YJ (2006) Repellency of Cinnamomum cassia bark compounds and cream containing cassia oil to Aedes aegypti (Diptera: Culicidae) under laboratory and indoor conditions. Pest Manag Sci 62:1032–1038

    Article  PubMed  CAS  Google Scholar 

  7. Gu HJ, Cheng SS, Huang CG, Chen WJ, Chang ST (2009) Mosquito larvicidal activities of extractives from black heartwood-type Cryptomeria japonica. Parasitol Res 105:1455–1458

    Article  PubMed  Google Scholar 

  8. Zhang A, Klun JA, Wang S, Carroll JF, Debboun M (2009) Isolongifolenone: a novel sesquiterpene repellent of ticks and mosquitoes. J Med Entomol 46:100–106

    Article  PubMed  CAS  Google Scholar 

  9. Biessmann H, Nguyen QK, Le D, Walter MF (2005) Microarray-based survey of a subset of putative olfactory genes in the mosquito Anopheles gambiae. Insect Mol Biol 14:575–589

    Article  PubMed  CAS  Google Scholar 

  10. Allison F, Carey AF, Wang G, Su C-Y, Zwiebel LJ, Carlson JR (2010) Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464:66–72

    Article  Google Scholar 

  11. Wang G, Carey AF, Carlson JR, Zwiebel LJ (2010) Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci USA 107:4418–4423

    Article  PubMed  CAS  Google Scholar 

  12. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  PubMed  CAS  Google Scholar 

  13. Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology. Elsevier, London, pp 391–446

    Chapter  Google Scholar 

  14. Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    Article  PubMed  CAS  Google Scholar 

  15. Grosse-Wilde E, Svatos A, Krieger J (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 31:547–555

    Article  PubMed  CAS  Google Scholar 

  16. Xu P, Atkinson R, Jones DN, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200

    Article  PubMed  CAS  Google Scholar 

  17. Laughlin JD, Soo TH, Jones DNM, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone binding protein. Cell 133:1255–1265

    Article  PubMed  CAS  Google Scholar 

  18. Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118

    Article  PubMed  Google Scholar 

  19. Biessmann H, Andronopoulou E, Biessmann MR, Douris V, Dimitratos SD, Eliopoulos E, Guerin PM, Iatrou K, Justice RW, Kröber T, Marinotti O, Tsitoura P, Woods DF, Walter MF (2010) The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS ONE 5(3):e9471

    Article  PubMed  Google Scholar 

  20. Pelletier J, Guidolin A, Syed Z, Cornel AJ, Leal WS (2010) Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J Chem Ecol 36:245–248

    Article  PubMed  CAS  Google Scholar 

  21. Biessmann H, Walter MF, Dimitratos S, Woods DF (2002) Isolation of cDNA clones encoding putative odorant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae. Insect Mol Biol 11:123–132

    Article  PubMed  CAS  Google Scholar 

  22. Andronopoulou E, Labropoulou V, Douris V, Woods DF, Biessmann H, Iatrou K (2006) Specific interactions among odorant-binding proteins of the African malaria vector Anopheles gambiae. Insect Mol Biol 15:797–811

    Article  PubMed  Google Scholar 

  23. Iatrou K, Biessmann H (2008) Sex-biased expression of odorant receptors in antennae and palps of the African malaria vector Anopheles gambiae. Insect Biochem Mol Biol 38:268–274

    Article  PubMed  CAS  Google Scholar 

  24. Xu PX, Zwiebel LJ, Smith DP (2003) Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 12:549–560

    Article  PubMed  CAS  Google Scholar 

  25. della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M (2001) Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol 10:9–18

    Article  PubMed  CAS  Google Scholar 

  26. Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V (2002) A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298:1415–1418

    Article  PubMed  CAS  Google Scholar 

  27. Ban LP, Scaloni A, Brandazza A, Angeli S, Zhang L, Yan Y, Pelosi P (2003) Chemosensory proteins of Locusta migratoria. Insect Mol Biol 12:125–134

    Article  PubMed  CAS  Google Scholar 

  28. Calvello M, Guerra N, Brandazza A, D’Ambrosio C, Scaloni A, Dani FR, Turillazzi S, Pelosi P (2003) Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci 60:1933–1943

    Article  PubMed  CAS  Google Scholar 

  29. Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209

    Article  PubMed  CAS  Google Scholar 

  30. Dani FR, Francese S, Mastrobuoni G, Felicioli A, Caputo B, Simard F, Pieraccini G, Moneti G, Coluzzi M, Della Torre A, Turillazzi S (2008) Exploring proteins in Anopheles gambiae male and female antennae through MALDI mass spectrometry profiling. PLoS One 3:e2822

    Article  PubMed  Google Scholar 

  31. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  32. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  33. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  34. Hekmat-Scafe DS, Steinbrecht RA, Carlson JR (1997) Coexpression of two odorant-binding protein homologs in Drosophila: implications for olfactory coding. J Neurosci 17:1616–1624

    PubMed  CAS  Google Scholar 

  35. Shanbhag SR, Hekmat-Scafe D, Kim MS, Park SK, Carlson JR, Pikielny C, Smith DP, Steinbrecht RA (2001) Expression mosaic of odorant-binding proteins in Drosophila olfactory organs. Microsc Res Tech 55:297–306

    Article  PubMed  CAS  Google Scholar 

  36. Prestwich GD (1993) Bacterial expression and photoaffinity labeling of a pheromone binding protein. Protein Sci 2:420–428

    Article  PubMed  CAS  Google Scholar 

  37. Kruse SW, Zhao R, Smith DP, Jones DN (2003) Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Biol 10:694–700

    Article  PubMed  CAS  Google Scholar 

  38. Tegoni M, Campanacci V, Cambillau C (2004) Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29:257–264

    Article  PubMed  CAS  Google Scholar 

  39. Wogulis M, Morgan T, Ishida Y, Leal WS, Wilson DK (2006) The crystal structure of an odorant binding protein from Anopheles gambiae: evidence for a common ligand release mechanism. Biochem Biophys Res Commun 339:157–164

    Article  PubMed  CAS  Google Scholar 

  40. Vogt RG (2002) Odorant binding protein homologues of the malaria mosquito Anopheles gambiae; possible orthologues of the OS-E and OS-F OBPs of Drosophila melanogaster. J Chem Ecol 28:2371–2376

    Article  PubMed  CAS  Google Scholar 

  41. Zhou JJ, He XL, Pickett JA, Field LM (2008) Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Mol Biol 17:147–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Dan Woods (Inscent, Inc., Irvine, CA) and Marika Walter (University of California, Irvine, CA) for access to their A. gambiae antennal cDNA library, which was used as starting material for the isolation of the ORFs of the OBPs analysed in this report. We also thank Maria Calzetta for technical assistance in rearing and manipulation of mosquito samples. This study was supported by a European Union grant (FP7/2007-2013,Grant Agreement No. FP7-222927) to FRD, JK, KI, LF and PP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Jiang Zhou or Paolo Pelosi.

Additional information

Dedicated to the memory of the late Harald Biessmann, our colleague and dear friend, who completed the cloning and initial characterization of the majority of Anopheles gambiae odorant-binding proteins.

H. Qiao and X. He contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2010_539_MOESM1_ESM.tif

Figure S1. Electrophoretic separation in native conditions of refolded samples of An. gambiae OBP1, OBP3, OBP4. Their migration as single bands indicates that refolding has not produced more than one form, nor oligomeric structures (TIFF 941 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, H., He, X., Schymura, D. et al. Cooperative interactions between odorant-binding proteins of Anopheles gambiae . Cell. Mol. Life Sci. 68, 1799–1813 (2011). https://doi.org/10.1007/s00018-010-0539-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0539-8

Keywords

Navigation