Cellular and Molecular Life Sciences

, Volume 67, Issue 5, pp 817–828 | Cite as

RETRACTED ARTICLE: cGMP-phosphodiesterase 6, transducin and Wnt5a/Frizzled-2-signaling control cGMP and Ca2+ homeostasis in melanoma cells

  • Alexandr V. BazhinEmail author
  • Vojtech Tambor
  • Boyan Dikov
  • Pavel P. Philippov
  • Dirk Schadendorf
  • Stefan B. Eichmüller
Research Article


Malignant melanoma is one of the most aggressive human neoplasms which develop from the malignant transformation of normal epithelial melanocytes and share the lineage with retinal cells. cGMP-phosphodiesterase 6 (PDE6) is one of the cancer-retina antigens newly identified in melanoma cells. Normally, PDE6 hydrolyzes the photoreceptor second messenger cGMP allowing the visual signal transduction in photoreceptor cells. cGMP also play an important signaling role in stimulating melanogenesis in human melanocytes. Here, we present evidence that PDE6 is a key enzyme regulating the cGMP metabolism in melanoma cells. Decrease in intracellular cGMP leads to calcium accumulation in melanoma cells. In these cells, cGMP-phosphodiesterase 6 can be activated by another cancer-retina antigen, transducin, through Wnt5a–Frizzled-2 cascade, which leads to a lowering of cGMP and an increase in intracellular calcium mobilization. Thus, the aberrant expression of PDE6 may control cGMP metabolism and calcium homeostasis in melanoma cells.


cGMP-phosphodiesterase 6 Transducin Cancer-retina antigens Wnt Frizzled Melanoma 



cGMP-phosphodiesterase 6






Intracellular calcium concentration










cGMP-dependent protein kinase



We are grateful to Mrs. A. Heinzelmann for her excellent technical assistance and Dr. M. Rogers for the English correction. This work was supported by the Intramural Program of DKFZ to A.V.B., and by the Russian Foundation for Basic Research (09-04-00395-a) and Hanse Wissenschaftskolleg, Germany to P.P.P.


  1. 1.
    Koh HK (1991) Cutaneous melanoma. N Engl J Med 325:171–182CrossRefGoogle Scholar
  2. 2.
    Tucker MA, Goldstein AM (2003) Melanoma etiology: where are we? Oncogene 22:3042–3052CrossRefGoogle Scholar
  3. 3.
    Geller AC, Miller DR, Annas GD, Demierre MF, Gilchrest BA, Koh HK (2002) Melanoma incidence and mortality among US whites, 1969–1999. JAMA 288:1719–1720CrossRefGoogle Scholar
  4. 4.
    Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332CrossRefGoogle Scholar
  5. 5.
    Chudnovsky Y, Khavari PA, Adams AE (2005) Melanoma genetics and the development of rational therapeutics. J Clin Invest 115:813–824CrossRefGoogle Scholar
  6. 6.
    Arnheiter H (1998) Evolutionary biology. Eyes viewed from the skin. Nature 391:632–633CrossRefGoogle Scholar
  7. 7.
    Bazhin AV, Schadendorf D, Willner N, De Smet C, Heinzelmann A, Tikhomirova NK, Umansky V, Philippov PP, Eichmüller SB (2007) Photoreceptor proteins as cancer-retina antigens. Int J Cancer 120:1268–1276CrossRefGoogle Scholar
  8. 8.
    Bazhin AV, Schadendorf D, Philippov PP, Eichmüller SB (2007) Recoverin as a cancer-retina antigen. Cancer Immunol Immunother 56:110–116CrossRefGoogle Scholar
  9. 9.
    Bazhin AV, Dalke C, Willner N, Abschütz O, Wildberger HGH, Philippov PP, Dummer R, Graw J, Hrabé de Angelis M, Schadendorf D, Umansky D, Eichmüller SB (2009) Cancer-retina antigens as potential paraneoplastic antigens in melanoma-associated retinopathy. Int J Cancer 124:140–149CrossRefGoogle Scholar
  10. 10.
    Bazhin AV, Schadendorf D, Owen RW, Zernii EY, Philippov PP, Eichmüller SB (2008) Visible light modulates the expression of cancer-retina antigens. Mol Cancer Res 6:110–118CrossRefGoogle Scholar
  11. 11.
    Beavo JA (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 75:725–748CrossRefGoogle Scholar
  12. 12.
    Beavo JA, Brunton LL (2002) Cyclic nucleotide research––still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718CrossRefGoogle Scholar
  13. 13.
    Romero-Graillet C, Aberdam E, Biagoli N, Massabni W, Ortonne JP, Ballotti R (1996) Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes. J Biol Chem 271:28052–28056CrossRefGoogle Scholar
  14. 14.
    Ahumada A, Slusarski DC, Liu X, Moon RT, Malbon CC, Wang HY (2002) Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science 298:2006–2010CrossRefGoogle Scholar
  15. 15.
    Ma L, Wang HY (2006) Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+pathway. J Biol Chem 281:30990–31001CrossRefGoogle Scholar
  16. 16.
    Ma L, Wang HY (2007) Mitogen-activated protein kinase p38 regulates the Wnt/cyclic GMP/Ca2+ non-canonical pathway. J Biol Chem 282:28980–28990CrossRefGoogle Scholar
  17. 17.
    Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771CrossRefGoogle Scholar
  18. 18.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  19. 19.
    Muradov KG, Boyd KK, Martinez SE, Beavo JA, Artemyev NO (2003) The GAFa domains of rod cGMP-phosphodiesterase 6 determine the selectivity of the enzyme dimerization. J Biol Chem 278:10594–10601CrossRefGoogle Scholar
  20. 20.
    Artemyev NO, Surendran R, Lee JC, Hamm HE (1996) Subunit structure of rod cGMP-phosphodiesterase. J Biol Chem 271:25382–25388CrossRefGoogle Scholar
  21. 21.
    Guo LW, Ruoho AE (2008) The retinal cGMP phosphodiesterase gamma-subunit-a chameleon. Curr Protein Pept Sci 9:611–625CrossRefGoogle Scholar
  22. 22.
    Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208CrossRefGoogle Scholar
  23. 23.
    Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from Drosophila functions as a wingless receptor. Nature 382:225–230CrossRefGoogle Scholar
  24. 24.
    Wang HY, Malbon CC (2004) Wnt-frizzled signaling to G-protein-coupled effectors. Cell Mol Life Sci 61:69–75CrossRefGoogle Scholar
  25. 25.
    Wang HY, Malbon CC (2003) Wnt signaling, Ca2+, and cyclic GMP: visualizing Frizzled functions. Science 300:1529–1530CrossRefGoogle Scholar
  26. 26.
    Slusarski DC, Corces VG, Moon RT (1997) Interaction of Wnt and a Frizzled homologue triggers G- protein-linked phosphatidylinositol signalling. Nature 390:410–413CrossRefGoogle Scholar
  27. 27.
    Jessen JR, Topczewski J, Bingham S, Sepich DS, Marlow F, Chandrasekhar A, Solnica-Krezel L (2002) Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 4:610–615CrossRefGoogle Scholar
  28. 28.
    Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288CrossRefGoogle Scholar
  29. 29.
    Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540CrossRefGoogle Scholar
  30. 30.
    Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702CrossRefGoogle Scholar
  31. 31.
    Gazdar AF, Carney DN, Russell EK, Sims HL, Baylin SB, Bunn PA Jr, Guccion JG, Minna JD (1980) Establishment of continuous, clonable cultures of small-cell carcinoma of lung which have amine precursor uptake and decarboxylation cell properties. Cancer Res 40:3502–3507PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Alexandr V. Bazhin
    • 1
    • 2
    Email author
  • Vojtech Tambor
    • 1
  • Boyan Dikov
    • 1
  • Pavel P. Philippov
    • 3
  • Dirk Schadendorf
    • 4
  • Stefan B. Eichmüller
    • 1
    • 2
  1. 1.Skin Cancer UnitGerman Cancer Research CenterHeidelbergGermany
  2. 2.Department of DermatologyUniversity of Heidelberg, University Hospital MannheimMannheimGermany
  3. 3.Department of Cell Signalling, A.N. Belozersky Institute of Physico-Chemical BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  4. 4.Department of DermatologyUniversity Hospital EssenEssenGermany

Personalised recommendations