Advertisement

Electron microprobe petrochronology of monazite-bearing garnet micaschists in the Oetztal-Stubai Complex (Alpeiner Valley, Stubai)

  • Bernhard SchulzEmail author
  • Joachim Krause
  • Robert Zimmermann
Article
  • 39 Downloads

Abstract

Monazite dating in metapelites is an emerging method to investigate polymetamorphic areas. A protocol for Th–U–Pb dating of monazite by electron microprobe was adopted for a JEOL JXA-8530F. It was applied to the Variscan and Early-Alpine metamorphic Austroalpine Oetztal-Stubai Complex (OSC). In the Alpeiner Valley in the Stubai region, the Schrankogel complex is the eastern succession of the Central Metabasite Zone. In this part, metabasites are alternating with metapelites. In 4 samples from micaschist lenses, dominantly Carboniferous monazite isochrone ages at 335 ± 4 Ma, 320 ± 4 Ma; 319 ± 4 Ma and 319 ± 4 Ma were obtained. The micaschist samples with diverse modal compositions and variable bulk rock Ca contents of calculated assay, display distinct monazite microstructures, as quantified by automated SEM-MLA (mineral liberation analysis) routines. Clusters of small monazite could indicate new crystallization and yielded isochrones at 313 and 304 Ma. In contrast, corona structures of apatite and allanite around large monazites with isochrones between 350 and 315 Ma suggest a decomposition during decreasing temperature. Garnets in metapelitic assemblages display growth zonations with low pyrope contents in the cores and pyrope-rich rims. A prograde metamorphism with high pressure amphibolite-facies peak conditions at ~ 12 kbar and ~ 680 °C, and a post Pmax path with decompression to 4 kbar and 640–600 °C was estimated from the micaschists and from zoned Ca-amphiboles in retrogressed amphibolitized eclogites. The P–T path entered the monazite stability field during the decompression. This signals a Carboniferous age of the metamorphism. A minor population in one sample is composed of sporadic Permian single monazite ages. A Cretaceous monazite population is lacking. In the wide parts of the Austroalpine basement with Carboniferous-to-Cretaceous mica mixing ages, monazite age populations allow to discriminate a distinct Permian metamorphic event.

Keywords

Th–U–Pb-monazite dating Geothermobarometry Automated SEM mineral liberation analysis Variscan Austroalpine basement Eastern Alps 

Notes

Acknowledgements

The electron-microprobe silicate analyses were performed during sessions with technical assistance through D. Heger, Institut für Werkstoffwissenschaft der TU Bergakademie Freiberg. Support at the SEM studies in the Laboratory of Geometallurgy at Freiberg was provided by K. Bachmann and S. Gilbricht. R. Zimmermann thanks the team of Franz-Senn Hütte for hospitality during field work in 2013. The detailed and useful comments provided by B. Budzyń, I. Broska, J. M. Allaz and anonymous reviewers to various versions of the manuscript, and the editorial efforts are gratefully acknowledged.

Supplementary material

15_2019_351_MOESM1_ESM.xls (47 kb)
Online Resource 1: Protocol for monazite analysis with JEOL JXA-8530F electron microprobe, hosted at Helmholtz Institute Freiberg of Resource Technology. Counts per second (Cts/s) on peak (PK) and background (BKG) refer to reference monazite Madmon (Schulz and Schüssler 2013), except for element Eu**, which refers to a monazite from sample RZ29 (mean of 5 analyses). Error ε is calculated from cts/s rates as ε = √(ctsPK + ctsBKG)/(ctsPK-ctsBKG). El = element. Line interferences and corresponding factors are indicated. (XLS 47 kb)
15_2019_351_MOESM2_ESM.jpg (1.2 mb)
Online Resource 2: WDS linescans with H-type spectrometer and PETH crystal of a JEOL-JXA-8530 electron microprobe at Helmholtz Institute Freiberg of Resource Technology. The spectrometer positions around the PbMα peak are considered. Beam conditions are 20 kV, 50 nA, diameter 6 µm. A square area of 24 µm is analysed at a Dwell time of 700 ms. (JPEG 1217 kb)
15_2019_351_MOESM3_ESM.xls (398 kb)
Online Resource 3: Electron microprobe analyses of metamorphic monazite from metapelites of the Schrankogel complex in the Oetztal-Stubai basement in the Alpeiner Valley around Franz-Senn-Hütte. Monazite ages from single analyses are given with 2σ error. Mnz monazite single grain. (XLS 398 kb)
15_2019_351_MOESM4_ESM.xls (24 kb)
Online Resource 4: Electron microprobe analyses of Ca-amphiboles in amphibolitized eclogite (RZ24) and amphibolite (RZ37) from the Schrankogel complex in the Alpeiner Valley around Franz-Senn-Hütte, Austroalpine Oetztal-Stubai basement. Cation formula is calculated on the basis of 23 oxygens (Leake et al. 1997), with site allotment CNK13. (XLS 24 kb)

References

  1. Allaz, J. M. (2017). Testing a new electron microprobe and developing new analytical protocols. Microscopy Microanalysis,23(Suppl. 1), 1052–1053.  https://doi.org/10.1017/S143192761700592X.CrossRefGoogle Scholar
  2. Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K., & Raith, M. (1992). Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Fe-Mg partitioning and a reformulation of the garnet-biotite geothermometer. Contributions to Mineralogy and Petrology,111, 87–93.CrossRefGoogle Scholar
  3. Broska, I., & Siman, P. (1998). The breakdown of monazite in the West-Capathian Veporic orthogneisses and Tatric granites. Geologica Carpathica,49, 161–167.Google Scholar
  4. Budzyń, B., Harlov, D. E., Kozub-Budzyń, G. A., & Majka, J. (2017). Experimental constraints on the relative stabilities of the two systems monazite-(Ce)–allanite-(Ce)–fluorapatite and xenotime-(Y)–(Y, HREE)-rich epidote–(Y, HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200–1000 MPa and 450–750 °C. Mineralogy and Petrology,111, 183–217.  https://doi.org/10.1007/s00710-016-0464-0.CrossRefGoogle Scholar
  5. Budzyń, B., Harlov, D. E., Williams, M. L., & Jercinovic, M. J. (2011). Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist,96, 1547–1567.  https://doi.org/10.2138/am.2011.3741.CrossRefGoogle Scholar
  6. Cardozo, N., & Allmendinger, R. W. (2013). Spherical projections with OSXStereonet. Computers & Geosciences,51, 193–205.  https://doi.org/10.1016/j.cageo.2012.07.021.CrossRefGoogle Scholar
  7. Egger, H. (1997). Das sinistrale Innsbruck-Salzburg-Amstetten-Blattverschiebungssystem: Ein weiterer Beleg für die miozäne laterale Extrusion der Ostalpen. Jahrbuch der Geologischen Bundesanstalt,140(1), 47–50.Google Scholar
  8. Egglseder, M., & Fügenschuh, B. (2013). Pre-Alpine fold interference pattern in the northeastern Oetztal-Stubai Complex (Tyrol, Austria). Austrian Journal of Earth Sciences,106(2), 63–74.Google Scholar
  9. Fandrich, R., Gu, Y., Burrows, D., & Moeller, K. (2007). Modern SEM-based mineral liberation analysis. International Journal of Mineral Processing,84, 310–320.  https://doi.org/10.1016/j.minpro.2006.07.018.CrossRefGoogle Scholar
  10. Finger, F., Broska, I., Roberts, M., & Schermaier, A. (1998). Replacement of primary monazite by allanite-epidote coronas in an amphibolite-facies granite gneiss from the eastern Alps. American Mineralogist,83, 248–258.  https://doi.org/10.2138/am-1998-3-408.CrossRefGoogle Scholar
  11. Finger, F., Krenn, E., Schulz, B., Harlov, D. E., & Schiller, D. (2016). Satellite monazites in polymetamorphic basement rocks of the Alps: Their origin and petrological significance. American Mineralogist,101, 1094–1103.  https://doi.org/10.2138/am-2016-5477.CrossRefGoogle Scholar
  12. Frank, W., Kralik, M., Scharbert, S., & Thöni, M. (1987). Geochronological data from the Eastern Alps. In H. W. Flügel & P. Faupl (Eds.), Geodynamics of the Eastern Alps (pp. 272–281). Wien: Deuticke Verlag.Google Scholar
  13. Frey, M., Desmons, J., & Neubauer, F. (1999). The new metamorphic map of the Alps. Swiss Bulletin of Mineralogy and Petrology,79, 1–4.Google Scholar
  14. Frisch, W., Dunkl, I., & Kuhlemann, J. (2000). Post-collisional orogen-parallel large-scale extension in the Eastern Alps. Tectonophysics,327, 239–265.  https://doi.org/10.1016/S0040-1951(00)00204-3.CrossRefGoogle Scholar
  15. Ganguly, J., Cheng, W., & Tirone, M. (1996). Thermodynamics of aluminosilicate garnet solid solution: new experimental data, an optimized model, and thermometric applications. Contributions to Mineralogy and Petrology,126, 137–151.  https://doi.org/10.1007/s004100050240.CrossRefGoogle Scholar
  16. Gerya, T., Perchuk, L., Triboulet, C., Audren, C., & Sezko, A. (1997). Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan. Petrology,5(6), 503–533.Google Scholar
  17. Goswami-Banerjee, G., & Robyr, M. (2015). Pressure and temperature conditions for crystallization of metamorphic allanite and monazite in metapelites: A case study from Miyar Valley (high Himalayan Crystalline of Zanskar, NW India). Journal of Metamorphic Geology,33, 535–556.  https://doi.org/10.1111/jmg.12133.CrossRefGoogle Scholar
  18. Hammer, W. (1929). Erläuterungen zur Geologischen Spezialkarte der Republik Österreich Blatt Ötztal (5146). Wien: Geologische Bundesanstalt.Google Scholar
  19. Harlov, D. E., Wirth, R., & Hetherington, C. J. (2011). Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology,162, 329–348.  https://doi.org/10.1007/s00410-010-0599-7.CrossRefGoogle Scholar
  20. Hauke, M., Froitzheim, N., Nagel, T. J., Miladinova, I., Fassmer, K., Fonseca, R. O. C., et al. (2019). Two high-pressure metamorphic events, Variscan and Alpine, dated by Lu–Hf in an eclogite complex of the Austroalpine nappes (Schobergruppe, Austria). International Journal of Earth Sciences,108, 1317–1331.  https://doi.org/10.1007/s00531-019-01708-8.CrossRefGoogle Scholar
  21. Hoernes, S., & Hoffer, E. (1973). Der Amphibolitzug des mittleren Ötztales (Tirol). Veröffentlichungen des Tiroler Landesmuseum Ferdinandeum (Innsbruck),53, 159–180.Google Scholar
  22. Hoinkes, G., Koller, F., & Rantitsch, G. (1999). Alpine metamorphism of the Eastern Alps. Schweizerische Mineralogische und Petrographische Mitteilungen,79(1), 155–181.Google Scholar
  23. Hoinkes, G., Kostner, A., & Thöni, M. (1991). Petrologic constraints for Eoalpine eclogite facies metamorphism in the Austroalpine Ötztal basement. Mineralogy and Petrology,43, 237–254.CrossRefGoogle Scholar
  24. Hoinkes, G., & Thöni, M. (1993). Evolution of the Ötztal-Stubai, Scarl-Campo and Ulten Basement Units. In J. F. von Raumer & F. Neubauer (Eds.), The pre-Mesozoic Geology of the Alps (pp. 485–494). Heidelberg: Springer Verlag.CrossRefGoogle Scholar
  25. Holdaway, M. J. (2001). Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist,86, 1117–1129.  https://doi.org/10.2138/am-2001-1001.CrossRefGoogle Scholar
  26. Holland, T. J. B. (1980). The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. American Mineralogist,65, 129–134.Google Scholar
  27. Holland, T. J. B. (1983). The experimental determination of activities in disordered and short-range ordered jadeitic pyroxene. Contributions to Mineralogy and Petrology,82, 214–220.CrossRefGoogle Scholar
  28. Holland, T. J. B., & Powell, R. (1998). An internally-consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology,16, 309–344.CrossRefGoogle Scholar
  29. Janots, E., Brunet, F., Goffé, B., Poinssot, C., Burchard, M., & Cemic, L. (2007). Thermochemistry of monazite-(La) and dis-sakisite-(La): implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology,154, 1–14.  https://doi.org/10.1007/s00410-006-0176-2.CrossRefGoogle Scholar
  30. Jarosewich, E., & Boatner, L. A. (1991). Rare-earth element reference samples for electron microprobe analysis. Geostandards Newsletter,15, 397–399.CrossRefGoogle Scholar
  31. Jercinovic, M. J., Williams, M. L., & Lane, E. D. (2008). In-situ trace element analysis of monazite and other fine-grained accessory minerals by EMPA. Chemical Geology,254, 197–215.  https://doi.org/10.1016/j.chemgeo.2008.05.016.CrossRefGoogle Scholar
  32. Klötzli-Chowanetz, E. (2016). Bericht 2014 über geologische Aufnahmen im östlichen Ötztalkristallin auf Blatt 147 Axams. Jahrbuch der Geologischen Bundesanstalt,156(1–4), 270–273.Google Scholar
  33. Klötzli-Chowanetz, E., Klötzli, U., & Koller, F. (1997). Lower Ordovician migmatisation in the Ötztal crystalline basement (Eastern Alps, Austria): Linking U-Pb and Pb-Pb dating with zircon morphology. Swiss Bulletin of Mineralogy and Petrology,77, 315–324.Google Scholar
  34. Klötzli-Chowanetz, E., Klötzli, U., & Skiöld, T. (2001). Cambrian migmatisation and Ordovician tonalitic intrusion—Klopaier area, Ötztal crystalline complex, Eastern Alps. Mitteilungen der Österreichischen Mineralogischen Gesellschaft,146, 133–134.Google Scholar
  35. Krenn, E., & Finger, F. (2007). Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: Microprobe data and geochronological implications. Lithos,95, 130–147.  https://doi.org/10.1016/j.lithos.2006.07.007.CrossRefGoogle Scholar
  36. Krenn, E., Schulz, B., & Finger, F. (2012). Three generations of monazite in Austroalpine basement rocks to the south of the Tauern Window—Evidences for Variscan, Permian and Alpine metamorphism. Swiss Journal of Geosciences,105, 343–360.  https://doi.org/10.1007/s00015-012-0104-6.CrossRefGoogle Scholar
  37. Kunz, B. E., Manzotti, P., von Niederhäusern, B., Engi, M., Darling, J. R., Giuntoli, F., et al. (2018). Permian high-temperature metamorphism in the Western Alps (NW Italy). International Journal of Earth Sciences (Geologische Rundschau),107, 203–218.  https://doi.org/10.1007/s00531-017-1485-6.CrossRefGoogle Scholar
  38. Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., et al. (1997). Nomenclature of Amphiboles: Report of the subcommittee in amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. The Canadian Mineralogist,35, 219–246.Google Scholar
  39. Ludwig, K. (2001). Users manual for Isoplot/Ex (rev. 2.49): A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronological Center.Google Scholar
  40. Marotta, A. M., & Spalla, M. I. (2007). Permian-Triassic high thermal regime in the Alps: Result of late Variscan collapse or continental rifting? Validation by numerical modeling. Tectonics,26, TC4016.  https://doi.org/10.1029/2006TC002047.CrossRefGoogle Scholar
  41. Miller, D. S., Jäger, E., & Schmidt, K. (1967). Rb-Sr-Altersbestimmungen an Biotiten der Raibler Schichten des Brennermesozoikums und am Muscovitgneis von Vent (Ötztaler Alpen). Eclogae Geologicae Helveticae,60, 537–541.  https://doi.org/10.5169/seals-163498.CrossRefGoogle Scholar
  42. Miller, C., & Thöni, M. (1995). Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria): Geochemistry and Sm-Nd vs. Rb-Sr isotope systematics. Chemical Geology,122, 199–225.CrossRefGoogle Scholar
  43. Mogessie, A., & Purtscheller, F. (1986). Polymetamorphism of the Oetztal-Stubai basement complex based on amphibolite petrology. Jahrbuch der Geologischen Bundesanstalt Wien,129, 69–91.Google Scholar
  44. Mogessie, A., Purtscheller, F., & Tessadri, R. (1985). Geochemistry of amphibolites from the Ötztal-Stubai Complex (Northern Tyrol, Austria). Chemical Geology,51, 103–113.CrossRefGoogle Scholar
  45. Montel, J., Foret, S., Veschambre, M., Nicollet, C., & Provost, A. (1996). A fast, reliable, inexpensive in situ dating technique: Electron microprobe ages on monazite. Chemical Geology,131, 37–53.CrossRefGoogle Scholar
  46. Neubauer, F., Hoinkes, G., & Sassi, F. P. (1999). Pre-Alpine metamorphism of the Eastern Alps. Swiss Bulletin of Mineralogy and Petrology,79(1), 41–62.Google Scholar
  47. Osbahr, I., Krause, J., Bachmann, K., & Gutzmer, J. (2015). Efficient and accurate identification of Platinum-Group Minerals by a combination of mineral liberation and electron probe microanalysis with a new approach to the offline overlap correction of Platinum-Group Element concentrations. Microscopy and Microanalysis,21, 1–16.  https://doi.org/10.1017/S1431927615000719.CrossRefGoogle Scholar
  48. Palzer, M. (2016). Bericht 2014 über kristallingeologische Aufnahmen im Bereich Franz-Senn-Hütte und Bassler Joch auf Blatt 147 Axams. Jahrbuch der Geologischen Bundesanstalt,156(1–4), 273–278.Google Scholar
  49. Parrish, R. R. (1990). U-Pb dating of monazite and its application to geological problems. Canadian Journal Earth Sciences,27, 1431–1450.  https://doi.org/10.1139/e90-152.CrossRefGoogle Scholar
  50. Powell, R., & Holland, T. J. B. (1993). On the formulation of simple mixing models for complex phases. American Mineralogist,78, 1174–1180.Google Scholar
  51. Purtscheller, F. (1978). Ötztaler und Stubaier Alpen Sammlung Geologischer Führer (vol. 53, 2nd edn., pp. 128). Gebrüder Bornträger, Stuttgart.Google Scholar
  52. Pyle, J. M., & Spear, F. S. (1999). Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions. Geological Materials Research,1(6), 1–49.Google Scholar
  53. Pyle, J. M., Spear, F. S., Rudnick, R., & McDonough, W. (2001). Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. Journal of Petrology,42, 2083–2107.CrossRefGoogle Scholar
  54. Pyle, J. M., Spear, F. S., Wark, D. A., Daniel, C. G., & Storm, L. C. (2005). Contributions to precision and accuracy of chemical ages of monazite. American Mineralogist,90, 547–577.  https://doi.org/10.2138/am.2005.1340.CrossRefGoogle Scholar
  55. Ramsay, J. G., & Huber, M. (1987). Techniques of Modern Structural Geology, Vol. 2: Folds and Fractures (pp. 392). London: Academic Press.Google Scholar
  56. Ratschbacher, L., Frisch, W., Linzer, H. G., & Merle, O. (1991). Lateral extrusion in the Eastern Alps, Part 2: Structural analysis. Tectonics,10(2), 257–271.CrossRefGoogle Scholar
  57. Rode, S., Rösel, D., & Schulz, B. (2012). Constraints on the Variscan P-T evolution by EMP Th-U-Pb monazite dating in the polymetamorphic Austroalpine Oetztal-Stubai basement (Eastern Alps). German Journal of Geology (Zeitschrift der deutschen Gesellschaft für Geowissenschaften),163(1), 43–68.  https://doi.org/10.1127/1860-1804/2012/0163-0043.CrossRefGoogle Scholar
  58. Schindlmayr, A. (1999). Granitoids and plutonic evolution of the Ötztal-Stubai Massif. Ph.D. Dissertation, Universität Salzburg at Salzburg, Austria.Google Scholar
  59. Schmid, S., Fügenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae,97, 93–117.  https://doi.org/10.1007/s00015-004-1113-x.CrossRefGoogle Scholar
  60. Schmidegg, O. (1964). Die Ötztaler Schubmasse und ihre Umgebung. Verhandlungen der Geologischen Bundesanstalt Wien,1964(1), 27–47.Google Scholar
  61. Schulz, B. (1994). Polyphase Variscan P-T-deformation path from mica schists of the sillimanite zone in the Austroalpine Ötztal-Stubai basement (Eastern Alps). Neues Jahrbuch für Mineralogie Abhandlungen,168, 47–65.Google Scholar
  62. Schulz, B. (2014). Early Carboniferous P-T path from the Upper Gneiss Unit of Haut-Allier (French Massif Central)—reconstructed by geothermobarometry and EMP-Th-U-Pb monazite dating. Journal of Geosciences,59, 327–349.  https://doi.org/10.3190/Jgeosci.178.CrossRefGoogle Scholar
  63. Schulz, B. (2017). Polymetamorphism in garnet micaschists of the Saualpe Eclogite Unit (Eastern Alps, Austria), resolved by automated SEM methods and EMP-Th-U-Pb monazite dating. Journal of Metamorphic Geology,35(2), 141–163.  https://doi.org/10.1111/jmg.12224.CrossRefGoogle Scholar
  64. Schulz, B., & Schüssler, U. (2013). Electron-microprobe Th-U-Pb monazite dating in Early-Palaeozoic high-grade gneisses as a completion of U-Pb isotopic ages (Wilson Terrane, Antarctica). Lithos,175–176, 178–192.  https://doi.org/10.1016/j.lithos.2013.05.008.CrossRefGoogle Scholar
  65. Schulz, B., Steenken, A., & Siegesmund, S. (2008). Geodynamics of an Alpine terrane— the Austroalpine basement to the south of the Tauern Window as a part of the Adriatic Plate. In S. Siegesmund, B. Fügenschuh & N. Froitzheim (Eds.) Tectonic Aspects of the Alpine-Dinaride-Carpathian System (vol. 298, pp. 5–43). London: Geological Society of London Special Publications.Google Scholar
  66. Schuster, R., Scharbert, S., Abart, R., & Frank, W. (2001). Permo-Triassic extension and related HT/LP metamorphism in the Austroalpine—South Alpine realm. Mitteilungen Geologie und Bergbaustudenten Österreich,44, 111–141.Google Scholar
  67. Schuster, R., & Stüwe, K. (2008). Permian metamorphic event in the Alps. Geology,36/8, 603–606.  https://doi.org/10.1130/G24703A.1.CrossRefGoogle Scholar
  68. Söllner, F. (2001). The Winnebach migmatite (Ötz-Stubai crystalline unit)—Evidence for a Pan-African metamorphism in an overthrust nappe sequence in the Eastern Alps. Geologische und Paläontologische Mitteilungen der Universität Innsbruck,25, 199–200.Google Scholar
  69. Spear, F. S. (1993). Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monography Series No. 1 (pp. 799). Washington D. C.: Mineralogical Society of America.Google Scholar
  70. Spear, F. S. (2010). Monazite-allanite phase relations in metapelites. Chemical Geology,279(1-2), 55–62.  https://doi.org/10.1016/j.chemgeo.2010.10.004.CrossRefGoogle Scholar
  71. Spear, F. S., & Pyle, J. (2002). Apatite, monazite and xenotime in metamorphic rocks. Reviews in Mineralogy and Geochemistry,48/1, 293–335.  https://doi.org/10.2138/rmg.2002.48.7.CrossRefGoogle Scholar
  72. Spear, F. S., & Pyle, J. M. (2010). Theoretical modeling of monazite growth in a low-Ca metapelite. Chemical Geology,273, 111–119.  https://doi.org/10.1016/j.chemgeo.2010.02.016.CrossRefGoogle Scholar
  73. Spear, F. S., Pyle, J. M., & Cherniak, D. (2009). Limitations of chemical dating of monazite. Chemical Geology,266, 218–230.  https://doi.org/10.1016/j.chemgeo.2009.06.007.CrossRefGoogle Scholar
  74. Suzuki, K., & Adachi, M. (1991). Precambrian provenance and Silurian metamorphism of the Tsunosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochemical Journal,25, 357–376.CrossRefGoogle Scholar
  75. Suzuki, K., Adachi, M., & Kajizuka, I. (1994). Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth and Planetary Science Letters,128, 391–405.CrossRefGoogle Scholar
  76. Suzuki, K., & Kato, T. (2008). CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possible discordant age data. Gondwana Research,14, 569–586.  https://doi.org/10.1016/j.gr.2008.01.005.CrossRefGoogle Scholar
  77. Thöni, M. (1981). Degree and Evolution of the Alpine Metamorphism in the Austroalpine Unit W of Hohe Tauern in the light of K/Ar and Rb/Sr Age Determinations in Micas. Jahrbuch der Geologischen Bundesanstalt Wien,124, 111–174.Google Scholar
  78. Thöni, M. (1983). The climax of the early Alpine metamorphism in the Austroalpine thrust sheet. Memorie Science Geologiche Padova,36, 211–238.Google Scholar
  79. Thöni, M. (1999). A review of geochronological data from the Eastern Alps. Swiss Bulletin of Mineralogy and Petrology,79(1), 209–230.Google Scholar
  80. Thöny, W. F., Tropper, P., Schennach, F., Krenn, E., Finger, F., Kaindl, R., et al. (2008). The metamorphic evolution of migmatites from the Ötztal Complex (Tyrol, Austria) and constraints on the timing of the pre-Variscan high-T event in the Eastern Alps. Swiss Journal of Geosciences,101(Supplement 1), 111–126.  https://doi.org/10.1007/s00015-008-1290-0.CrossRefGoogle Scholar
  81. Tropper, P., & Hoinkes, G. (1996). Geothermobarometry of Al2SiO5-bearing metapelites in the western Austroalpine Ötztal-basement. Mineralogy and Petrology,58, 145–170.CrossRefGoogle Scholar
  82. Tropper, P., & Recheis, A. (2003). Garnet zoning as a window into the metamorphic evolution of a crystalline complex: The northern and central Austroalpine Ötztal-Complex as a polymorphic example. Mitteilungen der Österreichischen Geologischen Gesellschaft,94, 27–53.Google Scholar
  83. Upadhyay, D., & Pruseth, K. L. (2012). Fluid-induced dissolution breakdown of monazite from Tso Morari complex, NW Himalayas: Evidence for immobility of trace elements. Contributions to Mineralogy and Petrology,164, 303–316.  https://doi.org/10.1007/s00410-012-0739-3.CrossRefGoogle Scholar
  84. Williams, M. L., Jercinovic, M. J., Mahan, K. H., & Dumond, G. (2017). Electron microprobe petrochronology. Reviews in Mineralogy and Geochemistry,83, 153–182.  https://doi.org/10.1515/9783110561890-006.CrossRefGoogle Scholar
  85. Wu, C. M. (2015). Revised empirical garnet-biotite-muscovite-plagioclase (GBMP) geobarometer in metapelites. Journal of Metamorphic Geology,33, 167–176.  https://doi.org/10.1111/jmg.12115.CrossRefGoogle Scholar
  86. Wu, C. M., Zhang, J., & Ren, L. D. (2004). Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. Journal of Petrology,45(9), 1907–1921.CrossRefGoogle Scholar
  87. Zenk, M., & Schulz, B. (2004). Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineralogical Magazine,68(5), 769–786.  https://doi.org/10.1180/0026461046850218.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2019

Authors and Affiliations

  1. 1.Division of Economic Geology and PetrologyInstitute of Mineralogy, TU Bergakademie FreibergFreibergGermany
  2. 2.Department of AnalyticsHelmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource TechnologyFreibergGermany
  3. 3.Department of ExplorationHelmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource TechnologyFreibergGermany

Personalised recommendations