Crustal structure of the northern Dinarides and southwestern part of the Pannonian basin inferred from local earthquake tomography

  • Josipa Kapuralić
  • Franjo Šumanovac
  • Snježana Markušić


We present the results of local earthquake tomography (LET) analysis to investigate the crust and uppermost mantle structure in the northern Dinarides and southwestern Pannonian basin. Datasets of P-wave travel times are inverted to recover a three-dimensional P-wave velocity model of the survey area. Two data subsets were used in this study: (1) data recorded on 15 temporary seismic stations, which were deployed in Croatia in the framework of ALPASS-DIPS project, and (2) travel time datasets from the Croatian Seismological Survey and ORFEUS databases. The data enabled to achieve a resolution of less than a hundred kilometres in horizontal directions and a few kilometres in vertical direction in the area with good ray coverage, as is documented by the resolution tests. Velocity variations are computed on a grid using the three-dimensional nonlinear tomographic inversion method. Our study provides the first crustal three-dimensional seismic model of the studied area, and it is correlated with previous results in the survey area allowing us to infer the main crustal structures with high confidence. The velocity model reveals crustal thickening beneath the Dinarides and significant crustal thinning beneath the Pannonian basin. The Moho surface was determined on the basis of the highest velocity gradients in the vertical cross-sections. We find relatively high velocities below the northern Dinarides at shallow depths (< 10 km), and low velocities caused by deep local depressions in the Pannonian basin. A very pronounced high-velocity body is present in the transitional part between the Dinarides and the Pannonian basin at a depth range of 5–15 km. The strong velocity increase at depth of about 20 km indicates that the Dinaridic crust could be interpreted as two-layered, while the Pannonian crust is probably one-layered.


Northern Dinarides Southwestern Pannonian basin Local earthquake tomography 3D velocity model Crustal structure 



We would like to thank Ivo Allegretti, Croatian Seismological Survey and HEP (Croatian Electricity Company) for data of the permanent seismic stations in Croatia, ORFEUS and EIDA (European Integrated Data Archive) for data of the other stations and the International Seismological Centre (ISC) for event data. We would also like to thank members of the ALPASS-DIPS Working Group Endre Hegedűs, Attila C. Kovács, Jasna Orešković and Saša Kolar for their help during data acquisition and processing in the framework of ALPASS-DIPS project. We further acknowledge the very careful and constructive reviews of anonymous reviewers, as well as additional helpful remarks by Editors Prof. Stefan Schmid and Prof. Vladica Cvetković. Their detailed and constructive comments substantially improved the manuscript. Prof. Nicholas Rawlinson kindly provided his software. Figures are based on the Generic Mapping Tools software (Wessel et al. 2013). The research was partly supported by the fund of the University of Zagreb.


  1. Belinić, T., Stipčević, J., Živčić, M., & AlpArrayWorking Group. (2018). Lithospheric thickness under the Dinarides. Earth and Planetary Science Letters, 484, 229–240.CrossRefGoogle Scholar
  2. Bezada, M. J., Faccenda, M., & Toomey, D. R. (2016). Representing anisotropic subduction zones with isotropic velocity models: A characterization of the problem and some steps on a possible path forward. Geochemistry, Geophysics, Geosystems, 17(8), 3164–3189.CrossRefGoogle Scholar
  3. Brückl, E., Bleibinhaus, F., Gosar, A., Grad, M., Guterch, A., Hrubcová, P., et al. (2007). Crustal structure due to collisional and escape tectonics in the Eastern Alps region based on profiles Alp01 and Alp02 from the ALP 2002 seismic experiment. Journal of Geophysical Research, 112, B06308.CrossRefGoogle Scholar
  4. Brückl, E., Bodoky, T., Hegedűs, E., Hrubcová, P., Gosar, A., Grad, M., et al. (2003). ALP2002 seismic experiment. Studia Geophysica et Geodaetica, 47, 671–679.CrossRefGoogle Scholar
  5. Bureau Central International de Séismologie. (1972). Tables des tempts de propagation des ondes séismiques, Hodochrones pour la region des Balkans. Strasbourg: Manuel d’utilisation.Google Scholar
  6. Csontos, L., & Nagymarosy, A. (1998). The Mid-Hungarian line: A zone of repeated tectonic inversions. Tectonophysics, 297, 51–71.CrossRefGoogle Scholar
  7. Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 1–56.CrossRefGoogle Scholar
  8. Dando, B. D. E., Stuart, G. W., Houseman, G. A., Hegedüs, E., Brückl, E., & Radovanovic, S. (2011). Teleseismic tomography of the mantle in the Carpathian–Pannonian region of central Europe. Geophysical Journal International, 186, 11–31.CrossRefGoogle Scholar
  9. Diehl, T., Husen, S., Kissling, E., & Deichmann, N. (2009). High-resolution 3-DP-wave model of the Alpine crust. Geophysical Journal International, 179(2), 1133–1147.CrossRefGoogle Scholar
  10. Dragašević, T., & Andrić, B. (1968). Deep seismic sounding of the Earth’s crust in the area of the Dinarides and the Adriatic Sea. Geophysical Prospecting, 16(1), 54–76.CrossRefGoogle Scholar
  11. EIDA (2017): ORFEUS European Integrated Data Archive, available at: Last Accessed Dec 2017.
  12. Guterch, A., Grad, M., Špicak, A., Brückl, E., Hegedűs, E., Keller, G. R., et al. (2003). An overview of recent seismic refraction experiments in Central Europe. Studia Geophysica et Geodaetica, 47, 651–657.CrossRefGoogle Scholar
  13. Herak, M. (1989). Hyposearch—an Earthquake Location Program. Computers & Geosciences, 15(7), 1157–1162.CrossRefGoogle Scholar
  14. Herak, M., Herak, D., & Markušić, S. (1996). Revision of the earthquake catalogue and seismicity of Croatia, 1908–1992. Terra Nova, 8, 86–94.CrossRefGoogle Scholar
  15. Hetényi, G., & Bus, Z. (2007). Shear wave velocity and crustal thickness in the Pannonian Basin from receiver function inversions at four permanent stations in Hungary. Journal of Seismology, 11, 405–414.CrossRefGoogle Scholar
  16. International Seismological Centre (2018) On-line Bulletin. Internatl. Seis. Cent; Thatcham, United Kingdom Last Accessed Feb 2017.
  17. Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from travel times. Geophysical Journal International, 122, 108–124.CrossRefGoogle Scholar
  18. Kennett, B. L. N., Sambridge, M. S., & Williamson, P. R. (1988). Subspace methods for large scale inverse problems involving multiple parameter classes. Geophysical Journal, 94, 237–247.CrossRefGoogle Scholar
  19. Korbar, T. (2009). Orogenic evolution of the external Dinarides in the NE Adriatic region: A model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth-Science Reviews, 96, 296–312.CrossRefGoogle Scholar
  20. Koulakov, I., Kaban, M. K., & Tesauro, M. (2009). P- and S-velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data. Geophysical Journal International, 179, 345–366.CrossRefGoogle Scholar
  21. Kovács, S., & Haas, J. (2010). Displaced South Alpine and Dinaridic elements in the Mid-Hungarian zone. Central European Geology, 53(2–3), 135–164.CrossRefGoogle Scholar
  22. Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R., Guterch, A., Keller, G. R., et al. (2011). Shape and origin of the East-Alpine slab constrained by the ALPASS teleseismic model. Tectonophysics, 510, 195–206.CrossRefGoogle Scholar
  23. Orešković, J., Šumanovac, F., & Hegedűs, E. (2011). Crustal structure beneath Istra peninsula based on receiver function analysis. Geofizika, 28, 247–263.Google Scholar
  24. Pamić, J. (1993). Eoalpine to Neoalpine magmatic and metamorphic processes in the northwestern Vardar Zone, the easternmost Periadriatic Zone and the southwestern Pannonian Basin. Tectonophysics, 226, 503–518.CrossRefGoogle Scholar
  25. Pamić, J. (2002). The Sava–Vardar zone of the Dinarides and Hellenides versus the Vardar Ocean. Eclogae Geologicae Helvetiae, 95, 99–113.Google Scholar
  26. Pamić, J., Gušić, I., & Jelaska, V. (1998). Geodynamic evolution of the Central Dinarides. Tectonophysics, 297(1–4), 251–268.CrossRefGoogle Scholar
  27. Pamić, J., & Tomljenović, B. (1998). Basic geological data from the Croatian part of the Zagorje–mid-transdanubian zone. Acta Geologica Hungarica, 41, 389–400.Google Scholar
  28. Pavelić, D. (2001). Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Research, 13, 359–376.CrossRefGoogle Scholar
  29. Piromallo, C., & Morelli, A. (2003). P wave tomography of the mantle under the Alpine-Mediterranean area. Journal of Geophysical Research, 108(B2), 2065.CrossRefGoogle Scholar
  30. Rawlinson, N., Fichtner, A., Sambridge, M., & Young, M. K. (2014). Seismic tomography and the assessment of uncertainty. Advances in Geophysics, 55, 1–76.CrossRefGoogle Scholar
  31. Rawlinson, N., & Sambridge, M. (2003). Seismic traveltime tomography of the crust and lithosphere. Advances in Geophysics, 46, 81–198.CrossRefGoogle Scholar
  32. Rawlinson, N., Sambridge, M., & Saygin, E. (2008). A dynamic objective function technique for generating multiple solution models in seismic tomography. Geophysical Journal International, 174(1), 295–308.CrossRefGoogle Scholar
  33. Rawlinson, N., & Spakman, W. (2016). On the use of sensitivity tests in seismic tomography. Geophysical Journal International, 205, 1221–1243.CrossRefGoogle Scholar
  34. Rawlinson, N., Tkalčić, H., & Reading, A. M. (2010). Structure of the Tasmanian lithosphere from 3D seismic tomography. Australian Journal of Earth Sciences, 57, 381–394.CrossRefGoogle Scholar
  35. Royden, L. H., Horvath, F., & Rumpler, J. (1983). Evolution of the Pannonian basin system, 1. Tectonics, 2, 63–90.CrossRefGoogle Scholar
  36. Saftić, B., Velić, J., Sztano, O., Juhasz, G., & Ivković, Ž. (2003). Tertiary subsurface facies, source rocks and hydrocarbon reservoirs in the SW part of the Pannonian basin (Northern Croatia and Southwestern Hungary). Geologia Croatica, 56, 101–122.Google Scholar
  37. Sambridge, M. S. (1990). Non-linear arrival time inversion: Constraining velocity anomalies by seeking smooth models in 3-D. Geophysical Journal International, 102(3), 653–677.CrossRefGoogle Scholar
  38. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., et al. (2008). The Alpine–Carpathian–Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.CrossRefGoogle Scholar
  39. Sethian, J. A., & Popovici, A. M. (1999). 3-D traveltime computation using the fast marching method. Geophysics, 64, 516–523.CrossRefGoogle Scholar
  40. Šumanovac, F. (2010). Lithosphere structure at the contact of the Adriatic microplate and the Pannonian segment based on the gravity modelling. Tectonophysics, 485, 94–106.CrossRefGoogle Scholar
  41. Šumanovac, F. (2015). Lithosphere model of the Pannonian–Adriatic overthrusting. Tectonophysics, 665, 79–91.CrossRefGoogle Scholar
  42. Šumanovac, F., & Dudjak, D. (2016). Descending lithosphere slab beneath the northwest Dinarides from teleseismic tomography. Journal of Geodynamics, 102, 171–184.CrossRefGoogle Scholar
  43. Šumanovac, F., Hegedűs, E., Orešković, J., Kolar, S., Kovács, A. C., Dudjak, D., et al. (2016). Passive seismic experiment and receiver functions analysis to determine crustal structure at the contact of the northern Dinarides and south-western Pannonian Basin. Geophysical Journal International, 205, 1420–1436.CrossRefGoogle Scholar
  44. Šumanovac, F., Markušić, S., Engelsfeld, T., Jurković, K., & Orešković, J. (2017). Shallow and deep lithosphere slabs beneath the Dinarides from teleseismic tomography as the result of the Adriatic lithosphere downwelling. Tectonophysics, 712–713, 523–541.CrossRefGoogle Scholar
  45. Šumanovac, F., Orešković, J., Grad, M., & ALP2002 Working Group. (2009). Crustal structure at the contact of the Dinarides and Pannonian basin based on 2-D seismic and gravity interpretation of the Alp07 profile in the ALP experiment. Geophysical Journal International, 179, 615–633.CrossRefGoogle Scholar
  46. Tari, V., & Pamić, J. (1998). Geodynamic evolution of the northern Dinarides and the southern part of the Pannonian Basin. Tectonophysics, 297, 269–281.CrossRefGoogle Scholar
  47. Tišljar, J., Vlahović, I., Velić, I., & Sokač, B. (2002). Carbonate platform megafacies of the Jurassic and Cretaceous deposits of the Karst Dinarides. Geologia Croatica, 55(2), 139–170.Google Scholar
  48. Tomljenović, B., Balling, P., Matoš, B., Vlahović, I., Herak, M., Herak, D., Blažok, L., Posarić, D., Širol, A., Schmid, S., Ustaszewski, K., (2017). Kinematic analysis of out- crop-scale joint and fault systems in the Mt. Velebit – implication to tectogenesis and active seismo-tectonics. In: 5th Reg. Mtg. Quaternary Geology Dedicated to Geohazards & Final Conf. LoLADRIA Project. Croatian Academy of Sciences and Arts, pp. 6970. Google Scholar
  49. Ustaszewski, K., Kounov, A., Schmid, S. M., Schaltegger, U., Krenn, E., Frank, W., et al. (2010). Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continent–continent collision to back-arc extension. Tectonics, 29, TC6017.CrossRefGoogle Scholar
  50. Ustaszewski, K., Schmid, S. M., Lugović, B., Schuster, R., Schaltegger, U., Bernoulli, D., et al. (2009). Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): Implications for the collision of the Adriatic and European plates. Lithos, 108, 106–125.CrossRefGoogle Scholar
  51. Vlahović, I., Tišljar, J., Velić, I., & Matičec, D. (2005). Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 333–360.CrossRefGoogle Scholar
  52. Wessel, P., et al. (2013). Generic mapping tools: Improved version released. EOS Transactions AGU, 94, 409–410.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2019

Authors and Affiliations

  1. 1.Department of Geophysical Exploration and Mine Surveying, Faculty of Mining, Geology and Petroleum EngineeringUniversity of ZagrebZagrebCroatia
  2. 2.Department of Geophysics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations