Advertisement

Swiss Journal of Geosciences

, Volume 112, Issue 2–3, pp 325–339 | Cite as

On the pre-history of the turbidite concept: an Alpine perspective on occasion of the 70th anniversary of Kuenen’s 1948 landmark talk

  • Dominik LetschEmail author
Article
  • 69 Downloads

Abstract

The recognition of turbidity currents as an important geological agent of sediment transport, sedimentation, and erosion 70 years ago, initiated a bonanza in clastic sedimentology and led to new interpretations of both recent marine sediments and ancient sedimentary rocks. Only scarce attention had been paid to graded bedding, a hallmark of turbidites, before ca. 1930 and almost nobody had linked it to episodic mass flow sedimentation. This article is an addition to the pre-history of the turbidite revolution from an Alpine, and more specifically, a Swiss perspective. It focuses on two time periods, the early and middle part of the eighteenth century and the turn from the nineteenth to the twentieth century. In the former period, Swiss naturalists such as Scheuchzer and Gruner had not only recognized the ubiquity of graded bedding in some Alpine flysch successions, but also proposed hypotheses as to its likely origin. In doing so, Gruner invoked in 1773 periodic sediment mobilization due to bottom currents on the floor of an ante-diluvian sea, resulting in distinct episodes of sediment settling giving rise to normally graded layers. Gruner’s model was inspired by several contemporaneous pioneers of experimental clastic sedimentology. This interest in physical sedimentology declined during the nineteenth century and it was only with the start of the second period discussed herein that geologists began to re-appreciate the importance of sediment movement at the bottom of the oceans. This time, inspiration came from the practical experience of Swiss geologists with shore collapse events and subsequent sedimentary mass flows in lakes. Building on that, they were able to better interpret parts of the Alpine sedimentary record, especially flysch successions. However, it was only with Bailey, Migliorini, Kuenen and others during the 1930s and 1940s that the link between mass flows and graded bedding was finally established.

Keywords

Flysch Wildflysch Mass flow sedimentation Eighteenth century geology Turbidites Limnogeology History of sedimentology Shore collapse Applied geology 

Notes

Acknowledgements

I want to express my gratitude to Andreas Bayer (Calgary) for the many inspiring discussions on the mysteries of mass flow sedimentation within the Swiss wildflysch, and on many other (also non-geological) topics, be it in the field, via e-mail, or on occasion of decent lunches in Zurich’s Brasserie Lipp and elsewhere. Two anonymous reviewers are acknowledged for their positive feedbacks. I also take the opportunity to dedicate this article, the writing of which has been motivated by the 70th anniversary of Kuenen’s first turbidite paper, to Wilfried Winkler on occasion of his 70th birthday. This is in recognition of Wilfried’s substantial contributions over the past decades to our knowledge of turbidite-dominated sedimentary successions in the Alps and elsewhere.

Supplementary material

15_2018_331_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Ammann, J. F. (1987). Entstehung und Sicherheitsaspekte des Zuger Seeufers. Zuger Neujahrsblatt,1987, 47–63.Google Scholar
  2. Arbenz, P. (1919). Probleme der Sedimentation und ihre Beziehungen zur Gebirgsbildung in den Alpen. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich,64, 246–275.Google Scholar
  3. Argand, E. (1916). Sur l’arc des Alpes Occidentales. Eclogae Geologicae Helvetiae,14, 145–191.Google Scholar
  4. Bailey, E. B. (1930). New light on sedimentation and tectonics. Geological Magazine,67, 77–92.Google Scholar
  5. Bailey, E. B. (1936). Sedimentation in relation to tectonics. Bulletin of the Geological Society of America,47, 1713–1726.Google Scholar
  6. Baker, V. R. (1978). The spokane flood controversy and the martian outflow channels. Science,202, 1249–1256.Google Scholar
  7. Bayer, A. (1982). Untersuchungen im Habkern-Mélange (« Wildflysch ») zwischen Aare und Rhein. Ph.D. Dissertation, ETH Zürich, Nr. 6950.Google Scholar
  8. Beck, P. (1912). Die Niesen-Habkerndecke und ihre Verbreitung im helvetischen Faciesgebiet. Eclogae Geologicae Helvetiae,7, 65–147.Google Scholar
  9. Bernoulli, D., & Jenkyns, H. C. (2009). Ancient oceans and continental margins of the Alpine-Mediterranean Tethys: Deciphering clues from Mesozoic pelagic sediments and ophiolites. Sedimentology,56, 149–190.Google Scholar
  10. Bertrand, M. (1884). Rapport de structure des Alpes de Glaris et du Bassin houiller du Nord. Bulletin de la Société géologique de France,12, 318–330.Google Scholar
  11. Blattmann, T. M., Letsch, D., & Eglinton, T. I. (2018). On the geological and scientific legacy of petrogenic organic carbon. American Journal of Science,318, 861–881.Google Scholar
  12. Boussac, J. (1912). Etudes stratigraphiques sur le Nummulitique alpin. Mémoires explicatives de la carte géologique de la France (pp. 1–662).Google Scholar
  13. Bramlette, M. N., & Bradley, W. H. (1940). Geology and biology of North American Atlantic deep-sea cores between Newfoundland and Ireland, Part 1. Lithology and geologic interpretations. U.S. Geological Survey Professional Paper, 196-A, 1–34.Google Scholar
  14. Bretz, J. H. (1923). The channeled scablands of the Columbia Plateau. The Journal of Geology,31, 617–649.Google Scholar
  15. Bürgisser, H. M., Gansser, A., & Pika, J. (1982). Late glacial lake sediments of the Indus valley area, northwestern Himalayas. Eclogae Geologicae Helvetiae,75, 51–63.Google Scholar
  16. Carozzi, A. V. (1969). De Maillet’s Telliamed (1748): An ultra-neptunian theory of the earth. In C. J. Schneer (Ed.), Toward a history of geology (pp. 159–183). Cambridge: The MIT Press.Google Scholar
  17. Carozzi, M., & Carozzi, A. V. (1987). Sulzer’s antidiluvialist and catastrophist theories on the origins of mountains. Archives des Sciences, Genève,40, 107–143.Google Scholar
  18. Clague, J. J., & Evans, S. G. (2000). A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews,19, 1763–1783.Google Scholar
  19. Daly, R. A. (1936). Origin of submarine “canyons”. American Journal of Science,31(186), 401–420.Google Scholar
  20. Dott, R. H. (2001). Wisconsin roots of the modern revolution in structural geology. Geological Society of America Bulletin,113, 996–1009.Google Scholar
  21. Ellenberger, F. (1994). Histoire de la géologie—tome 2 (p. 381). Paris: Technique et Documentation.Google Scholar
  22. Escher, H.C. (1822). Beiträge zur Naturgeschichte der freiliegenden Felsblöcke in der Nähe des Alpen-Gebirges. Mineralogisches Taschenbuch für das Jahr 1822 von Karl Caesar Ritter von Leonhard, III, 1822 (pp. 631–676).Google Scholar
  23. Eyles, V. A. (1969). The extent of geological knowledge in the eighteenth century, and the methods by which it was diffused. In C. J. Schneer (Ed.), Toward a history of geology (pp. 159–183). Cambridge: The MIT Press.Google Scholar
  24. Feyerabend, P. (1975). Against Method: Outline of an anarchistic theory of knowledge. London: NLB.Google Scholar
  25. Fischer, H. (1973). Johann Jakob Scheuchzer (2. August 1672–23. Juni 1733): Naturforscher und Arzt. Neujahrsblatt der Naturforschenden Gesellschaft in Zürich,175, 1–168.Google Scholar
  26. Forel, F.-A. (1888). Le ravin ravin sous- lacustres du Rhône dans le Lac Léman. Bulletin de la Société Vaudoise des Sciences Naturelles,23, 85–107.Google Scholar
  27. Fuchs, T. (1883). Welche Ablagerungen haben wir als Tiefseebildungen zu betrachten? Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilagen-Bände,2, 487–584.Google Scholar
  28. Furrer, H., & Leu, U. B. (1998). Der Landesplattenberg Engi. Glarus: Stiftung Landesplattenberg Engi.Google Scholar
  29. Gruner, G. S. (1760a). Die Eisgebirge des Schweizerlandes, dritter Theil, zweyter Theil. Bern: Abraham Wagner, Sohn.Google Scholar
  30. Gruner, G. S. (1760b). Die Eisgebirge des Schweizerlandes, dritter Theil, physikalische Betrachtungen über die Eisgebirge enthaltend. Bern: Abraham Wagner, Sohn.Google Scholar
  31. Gruner, G. S. (1773). Die Naturgeschichte Helvetiens in der alten Welt: Beschrieben von Gottlieb Sigmund Gruner. Bern: Abraham Wagner.Google Scholar
  32. Hahn, F. F. (1913). Untermeerische Gleitung bei Trenton Falls (Nordamerika) und ihr Verhältnis zu ähnlichen Störungsbildern. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 36. Beilage-Band (pp. 1–41).Google Scholar
  33. Heim, Arn. (1908). Über rezente und fossile subaquatische Rutschungen und deren lithologische Bedeutung. Neues Jahrbuch für Mineralogie, Paläontologie und Geologie,2, 136–157.Google Scholar
  34. Heim, Arn. (1924). Über submarine Denudation und chemische Sedimente. Geologische Rundschau,15, 1–47.Google Scholar
  35. Heim, Alb. (1932). Bergsturz und Menschenleben. Vierteljahrsschrift der naturforschenden Gesellschaft in Zürich,77/BB20, 1–218.Google Scholar
  36. Heim, A., Moser, R., & Bürkli, A. (1888). Die Catastrophe von Zug, 5. Juli 1887 (p. 60). Zürich: Hofer und Burger.Google Scholar
  37. Heitzmann, P. (2008). Die ersten geologischen Karten der Schweiz 1752–1853. Cartographica Helvetica,38, 21–36.Google Scholar
  38. Horn, E. (1914). Über die geologische Bedeutung der Tiefseegräben. Geologische Rundschau,5, 422–448.Google Scholar
  39. Hsü, K. J. (1970). The meaning of the word flysch: A short historical search. The Geological Association of Canada, Special Paper,7, 1–11.Google Scholar
  40. Hsü, K. J. (2004). Physics of sedimentology (2nd ed.). Berlin: Springer.Google Scholar
  41. Hsü, K. J., & Kelts, K. (1985). Swiss lakes as a geological laboratory. Part I: Turbidity currents. Naturwissenschaften,72, 315–321.Google Scholar
  42. Huber, A. (1982). Felsbewegungen und Uferabbrüche an Schweizer Seen, ihre Ursachen und Auswirkungen. Eclogae Geologicae Helvetiae,75, 563–578.Google Scholar
  43. Kelts, K., & Hsü, K. J. (1980). Resedimented facies of 1875 Horgen slumps in Lake Zurich and a process model of longitudinal transport of turbidity currents. Eclogae Geologicae Helvetiae,73, 271–281.Google Scholar
  44. Kuenen, P.H. (1950). Turbidity currents of high density. In W. B. Harland, O. T. Jones (Eds.), Proceedings of section G, the geology of sea and ocean floors (pp. 44–52). London: International Geological Congress, Report of the eighteenth session Great Britain 1948.Google Scholar
  45. Kuenen, P. H., & Migliorini, C. I. (1950). Turbidity currents as a cause of graded bedding. The Journal of Geology,58, 91–127.Google Scholar
  46. Kuhn, T. (2000). The road since structure. Philosophical essays, 1970–1993, with an autobiographical interview, edited by James Conant and John Haugeland. Chicago: The University of Chicago Press.Google Scholar
  47. Laudan, R. (1987). From mineralogy to geology. Chicago: The University of Chicago Press.Google Scholar
  48. Leith, C. K. (1913). Structural geology. New York: Henry Holt and Company.Google Scholar
  49. Letsch, D. (2015). R.A. Daly’s early model of seafloor generation 40 years before the Vine-Matthews hypothesis: An outstanding theoretical achievement inspired by field work on St. Helena in 1921–1922. Canadian Journal of Earth Sciences,52, 893–902.Google Scholar
  50. Letsch, D. (2016). Swiss contributions to mid-nineteenth century tectonic research: A step backwards or the prologue to the nappe tectonics revolution? Geological Society, London, Special Publications,442, 105–116.Google Scholar
  51. Letsch, D. (2017). The Isentobel in Central Switzerland: Remnants of the Penninic ocean and a source of inspiration for Gustav Steinmann’s idea of young ophiolites. International Journal of Earth Sciences,106, 1693–1694.Google Scholar
  52. Letsch, D. (2018). Catastrophic lake level drop due to moraine dam failure: Did it happen to Lake Zurich in the late Pleistocene? Swiss Bulletin for Applied Geology,21, 109–118.Google Scholar
  53. Lugeon, M. (1901). Les grandes nappes de recouvrement des Alpes du Chablais et de la Suisse. Bulletin de la Société géologique de France,3, 723–823.Google Scholar
  54. Menard, H. W. (1986). The ocean of truth: A personal history of global tectonics. Princeton: Princeton University Press.Google Scholar
  55. Migliorini, C. (1943). Sul modo di formazione dei complessi tipo Macigno. Bolletino della Società Geologica Italiana,67, 48–50.Google Scholar
  56. Moser, R., Culman, K., Gränicher, G., Heim, A., Hellwag, W., Lang, F. (1876). Bericht und Expertengutachten über die im Februar und September 1875 in Horgen vorgekommenen Rutschungen. Zürich. https://www.e-rara.ch/zuz/doi/10.3931/e-rara-51145. Accessed 15 July 2018.
  57. Mulder, T., & Alexander, J. (2001). The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology,48, 269–299.Google Scholar
  58. Mutti, E., Bernoulli, D., Ricci Lucchi, F., & Tinterri, R. (2009). Turbidites and turbiditiy currents of continental margins. Sedimentology,56, 267–318.Google Scholar
  59. Nipkow, F. (1920). Vorläufige Mitteilungen über Untersuchungen des Schlammabsatzes im Zürichsee. Zeitschrift für Hydrologie,1, 100–122.Google Scholar
  60. Nipkow, F. (1927). Über das Verhalten der Skelette planktischer Kieselalgen im geschichteten Tiefenschlamm des Zürich- und Baldeggersees. Ph.D. Dissertation, ETH Zurich, Nr. 450 (p. 49).Google Scholar
  61. Pettijohn, F. J. (1957). Sedimentary rocks (2nd ed.). New York: Harper and Brothers.Google Scholar
  62. Popper, K. (1969). Conjectures and refutations: The growth of scientific knowledge. London: Routledge and Kegan Paul.Google Scholar
  63. Quereau, E. C. (1893). Die Klippenregion von Iberg (Sihltal). Beiträge zur geologischen Karte der Schweiz,33, 158.Google Scholar
  64. Rappaport, R. (1969). The geological atlas of Guettard, Lavoisier, and Monnet: Conflicting views of the nature of geology. In C. J. Schneer (Ed.), Toward a history of geology (pp. 272–287). Cambridge: The MIT Press.Google Scholar
  65. Rappaport, R. (1978). Geology and orthodoxy: The case of Noah’s Flood in eighteenth-century thought. The British Journal for the History of Science,11, 1–18.Google Scholar
  66. Rappaport, R. (1997). When geologists were historians 1665–1750. Ithaca: Cornell University Press.Google Scholar
  67. Ricci-Lucchi, F. (2003). Carlo Migliorini: On the mode of formation of Macigno-type complexes. Marine and Petroleum Geology,20, 527.Google Scholar
  68. Roger, J. (1995). La place de Buffon dans l’histoire des sciences de la terre. Mémoires de la Société géologique de France,168, 55–58.Google Scholar
  69. Schardt, H. (1892). Notice sur l’effondrement du Quai du Trait de Baye à Montreux précédée de quelques considérations générales sur la morphologie géophysique des rives lacustres, la formation des cônes des déjection, etc. Bulletin de la Société Vaudoise des Sciences Naturelles,28, 231–265.Google Scholar
  70. Schardt, H. (1894). Sur l’origine des Préalpes romandes. Eclogae Geologicae Helvetiae,4, 129–142.Google Scholar
  71. Schardt, H. (1897). Die exotischen Gebiete, Klippen und Blöcke am Nordrande der Schweizeralpen. Eclogae Geologicae Helvetiae,5, 233–250.Google Scholar
  72. Schardt, H. (1898). Les régions exotiques du versant nord des Alpes Suisses (Préalpes du Chablais et du Stockhorn et les Klippes): Leurs relations avec l’origine des blocs et brèches exotiques et la formation du Flysch. Bulletin de la Société Vaudoise des Sciences Naturelles,34, 113–219.Google Scholar
  73. Scheuchzer, J. J. (1716). Helvetiae Stoicheiographia, Orographia et Oreographia oder Beschreibung der Elementen, Grenzen und Bergen des Schweitzerlandes, der Natur-Histori des Schweitzerlandes erster Theil. Zürich: In der Bodmerischen Truckerey.Google Scholar
  74. Scheuchzer, J. J. (1718). Meteorologia et Oryctographia Helvetica oder Beschreibung der Lufft-Geschichten, Steinen, Metallen und anderen Mineralien des Schweitzerlandes absonderlich auch der Uberbleibselen der Sündtfluth. Zürich: In der Bodmerischen Truckerey.Google Scholar
  75. Şengör, A. M. C. (2001). Is the present the key to the past or the past the key to the present? James Hutton and Adam Smith versus Abraham Gottlob Werner and Karl Marx in interpreting history. Geological Society of America: Special Paper 355.Google Scholar
  76. Şengör, A. M. C. (2003). The repeated rediscovery of mélanges and its implications for the possibility and the role of objective evidence in the scientific enterprise. Geological Society of America Special Paper,373, 385–445.Google Scholar
  77. Shrock, R. R. (1948). Sequence in layered rocks. New York: McGraw-Hill.Google Scholar
  78. Strasser, M., Monecke, K., Schnellmann, M., & Anselmetti, F. S. (2013). Lake sediments as natural seismographs: A compiled record of Late Quaternary earthquakes in Central Switzerland and its implications for Alpine deformation. Sedimentology,60, 319–341.Google Scholar
  79. Strupler, M., Hilbe, M., Anselmetti, F. S., & Strasser, M. (2015). Das neue Tiefenmodell des Zürichsees: Hochauflösende Darstellung der geomorphodynamischen Ereignisse im tiefen Seebecken. Swiss Bulletin für angewandte Geologie,20(2), 71–83.Google Scholar
  80. Studer, B. (1863). Geschichte der physischen Geographie der Schweiz bis 1815. Bern: Stämpfli & Schulthess.Google Scholar
  81. Suess, E. (1909). Das Antlitz der Erde, Dritter Band. Zweite Hälfte. Schluss des Gesamtwerkes. Wien: Tempsky und Freytag.Google Scholar
  82. Sulzer, J. G. (1746). Untersuchung von dem Ursprung der Berge, und andrer damit verknüpften Dinge (p. 44). Zürich: Gessner.Google Scholar
  83. Swedenborg, E. (1847). Miscellaneous observations. Translation of the 1722 Miscellanea observata. London: Newbery.Google Scholar
  84. Tercier, J. (1939). Depôts marins actuels et séries géologiques. Eclogae Geologicae Helvetiae,32, 47–100.Google Scholar
  85. Tercier, J. (1947). Le flysch dans la sédimentation alpine. Eclogae Geologicae Helvetiae,40(2), 163–198.Google Scholar
  86. Trümpy, R. (1960). Paleotectonic evolution of the Central and Western Alps. Bulletin of the Geological Society of America,71, 843–908.Google Scholar
  87. Trümpy, R. (1983). Die Schweizer Geologie von 1932 bis 1982. Eclogae Geologicae Helvetiae,76(1), 65–74.Google Scholar
  88. Trümpy, R. (2003). Trying to understand Alpine sediments—before 1950. Earth Science Reviews,61, 19–42.Google Scholar
  89. Trümpy, R. (2006). Geologie der Iberger Klippen und ihrer Flysch-Unterlage. Eclogae Geologicae Helvetiae,99, 79–121.Google Scholar
  90. Trümpy, R., & Westermann, A. (2008). Albert Heim (1849–1937): Weitblick und Verblendung in der alpintektonischen Forschung. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich,153, 67–79.Google Scholar
  91. Walker, R. G. (1973). Mopping up the turbidite mess. In R. N. Ginsburg (Ed.), Evolving concepts in sedimentology (pp. 1–37). Baltimore: The Johns Hopkins University Press.Google Scholar
  92. Wegmann, C. E. (1935). Gletschermurgang im Suess-Land (Nordostgrönland). Mitteilungen der Naturforschenden Gesellschaft Schaffhausen,12, 35–58.Google Scholar
  93. Wegmann, C. E. (1963). Tectonic patterns at different levels. The Geological Society of South Africa Alexander du Toit Memorial Lectures,8, 1–78.Google Scholar
  94. Wegmann, C. E. (1967). Zwischen Felsen und Hypothesen (Ein Beitrag zur Geschichte der Geologie). Mitteilungen der Naturforschenden Gesellschaft Schaffhausen,28, 211–240.Google Scholar
  95. Woodward, J. (1723). An essay towards a natural history of the Earth and terrestrial bodyes etc (3rd ed.). London: Bettesworth and Taylor.Google Scholar
  96. Zittel, K. A. (1899). Geschichte der Geologie und Paläontologie bis Ende des 19. Jahrhunderts. München: Oldenbourg.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.ZollikonSwitzerland

Personalised recommendations