Swiss Journal of Geosciences

, Volume 112, Issue 1, pp 101–120 | Cite as

Post-Variscan metamorphism in the Apuseni and Rodna Mountains (Romania): evidence from Sm–Nd garnet and U–Th–Pb monazite dating

  • Martin Kaspar Reiser
  • Gavril SăbăuEmail author
  • Elena Negulescu
  • Ralf Schuster
  • Peter Tropper
  • Bernhard Fügenschuh


The Tisza and Dacia mega-units constitute a central part of the Alps-Carpathians-Dinarides orogenic system. Polyphase medium-grade metamorphism observed in mineral assemblages from the crystalline basement is often correlated with Variscan and pre-Variscan events. However, a mid-Cretaceous Sm–Nd garnet age (103.6 ± 1.8 Ma) from the Apuseni Mountains is at odds with this interpretation. Electron-microprobe U-Th–Pb dating of monazite in samples from the Apuseni Mountains, the Rodna Mountains, as well as the Şimleu Silvaniei, Ticău and Preluca inselbergs revealed a complex pattern of Alpine and pre-Alpine age clusters. Pre-Variscan and Variscan ages were obtained from the core of zoned monazite grains and from samples that apparently escaped Alpine overprinting. Relic monazite in the latter is often replaced by rhabdophane and/or surrounded by allanite coronas. Permian to Early Triassic monazite ages correlate with the intrusion of granitic melts and pegmatites. Early Cretaceous ages from rims of chemically zoned grains and from monazite inclusions in garnet, biotite and staurolite represent newly formed metamorphic grains that crystallized on the prograde path during Alpine metamorphism. Petrographic observations of prograde allanite breakdown reactions, Sm–Nd garnet analyses and thermobaric estimates (500–550 °C/5–8 kbar) from parts of the Tisza and Dacia mega-units constrain medium-grade conditions during Early Cretaceous times. Exclusively mid-Cretaceous monazite ages from the inselbergs and the Rebra-Unit of the Rodna Mountains, allow extending the Alpine prograde overprint across the Transylvanian basin. Together with other studies from the basement of the Pannonian basin, this implies that the Dacia Mega-Unit and parts of the Tisza Mega-Unit experienced a medium-grade metamorphic overprint and synkinematic garnet-growth during late Early Cretaceous times. The Alpine prograde medium-grade overprint is pronounced in the contact zone between the Tisza and Dacia mega-units and forms a continuous belt with the Cretaceous metamorphic imprint in the Eastern Alps, when back-rotated to its original position during the Cretaceous.


Medium-grade metamorphism Tisza Dacia Cretaceous Transylvania 



We thank Martina Tribus and Thomas Theye for helping with the microprobe analyses, Stanislaw Grabala and Andrea Eberhöfer for help with the mineral separation and Monika Horschinegg and Wencke Wegner for chemical preparation and isotope measurements. Financial support by the Austrian Science Fund (FWF) in the frame of project I138-N19, granted to Bernhard Fügenschuh and the Romanian Executive Unit for Financing Research and Higher Education (UEFISCDI), project PN-II-ID-PCE-2011-3-0030, granted to Gavril Săbău are gratefully acknowledged. We would like to thank Vladica Cvetković, S.M. Schmid, F. Finger and an anonymous reviewer for careful reading and constructive comments that significantly improved the manuscript.

Supplementary material

15_2018_322_MOESM1_ESM.pdf (208 kb)
Online Resource 1: Detailed description of samples and methodology for U-Th-Pb measurement of monazite, thermobarometry and sample preparation for Sm-Nd garnet analyses (PDF 207 kb)
15_2018_322_MOESM2_ESM.pdf (243 kb)
Online Resource 2: Sm-Nd isotopic data on whole rock and garnet analyses. Analytical techniques are described in Online Resource 1. Bold ages are calculated from two or three garnet fractions and whole rock data. Ages marked with an asterisk are calculated based on individual Grt-batches (two-point isochrons). Errors on the 147Sm/144Nd ratio are ±1% (PDF 242 kb)
15_2018_322_MOESM3_ESM.pdf (100 kb)
Online Resource 3: Representative microprobe analyses of a) garnet (basis of formula calculation 12 oxygens); b) feldspar (basis of formula calculation 8 oxygens); c) muscovite (basis of formula calculation 22 oxygens) and d) biotite (basis of formula calculation 22 oxygens) (PDF 99 kb)
15_2018_322_MOESM4_ESM.pdf (6.4 mb)
Online Resource 4: Mg, Mn, Ca and Fe element distribution in garnet from a) the Vidolm Nappe (MR103); b) the Baia de Arieş Nappe (MR142) and c) the Bihor Unit (MR113) (PDF 6541 kb)
15_2018_322_MOESM5_ESM.pdf (787 kb)
Online Resource 5: Summary of microprobe analyses of monazite. Data marked in red are outside of the 1.5% tolerance level and have to be considered with caution (PDF 786 kb)
15_2018_322_MOESM6_ESM.pdf (729 kb)
Online Resource 6: Probability distribution plots, pooled clusters and deconvolved components of the summed probability function, centred on the averages of the pooled clusters. Insets represent an enlargement of the lower part of the graph showing the deconvolution residuals of the probability distribution plot for the analysed sample. The overall probability distribution and its deconvolved components appear truncated in the upper part of the graph. Full deconvolution of the probability distribution plot starting from the probability distribution in the selected age clusters. Inset displays a vertically-enlarged view showing the residuals of the fit. Deconvolution was not attempted in case of few analytical data (e.g. samples 12BrBA and 16MR2) (PDF 729 kb)


  1. Antić, M. D., Kounov, A., Trivić, B., Spikings, R., & Wetzel, A. (2017). Evidence of Variscan and Alpine tectonics in the structural and thermochronological record of the central Serbo-Macedonian Massif (south-eastern Serbia). International Journal of Earth Sciences, 106(5), 1665–1692.Google Scholar
  2. Antić, M. D., Kounov, A., Trivić, B., Wetzel, A., Peytcheva, I., & von Quadt, A. (2016). Alpine thermal events in the central Serbo-Macedonian Massif (southeastern Serbia). International Journal of Earth Sciences, 105(5), 1485–1505.Google Scholar
  3. Anton, D.C. (1999). Petrographical, Geochemical and Isotopic Study of Mt. Mare Granitoids, North Apuseni Mountains: Evolution of Peraluminous Magma. Ph.D. dissertation, Tokyo University, Japan, pp. 176.Google Scholar
  4. Árkai, P. (2001). Alpine regional metamorphism in the main tectonic units of Hungary: A review. Acta Geologica Hungarica, 44(2–3), 329–344.Google Scholar
  5. Árkai, P., Bérczi-Makk, A., & Balogh, K. (2000). Alpine low-T prograde metamorphism in the post-Variscan basement of the Great Plain, Tisza Unit (Pannonian Basin, Hungary). Acta Geologica Hungarica, 43(1), 43–63.Google Scholar
  6. Árkai, P., Bérczi-Makk, A., & Hajdu, D. (1998). Alpine prograde and retrograde metamorphisms in an overthrusted part of the basement, Great Plain, Pannonian Basin, Eastern Hungary. Acta Geologica Hungarica, 41(2), 179–210.Google Scholar
  7. Balen, D., Horváth, P., Finger, F., & Starijaš, B. (2013). Phase equilibrium, geothermobarometric and xenotime age dating constraints on the Alpine metamorphism recorded in chloritoid schists from the southern part of the Tisia Mega-Unit (Slavonian Mts., NE Croatia). International Journal of Earth Sciences, 102(4), 1091–1109.Google Scholar
  8. Balen, D., Massonne, H. J., & Lihter, I. (2017). Alpine metamorphism of low-grade schists from the Slavonian Mountains (Croatia): new PT and geochronological constraints. International Geology Review, 60(3), 288–304.Google Scholar
  9. Balintoni, I. (1982). Corrélation des unités lithostratigraphiques et tectoniques longeant le ruisseau d’Arieş entre la vallée de Iara et le Mont Găina (Monts Apuseni). Dări de Seamă ale Şedinţelor—Institutul de Geologie şi Geofizică, 69(5), 5–15.Google Scholar
  10. Balintoni, I. (1994). Structure of the Apuseni Mts. ALCAPA II. Field Trip Guidebook. Romanian Journal of Tectonics and Regional Geology, 75(2), 51–58.Google Scholar
  11. Balintoni, I., Balica, C., Cliveti, M., Li, L. Q., Hann, H. P., Chen, F. K., et al. (2009a). The emplacement age of the Muntele Mare Variscan granite (Apuseni Mountains, Romania). Geologica Carpathica, 60(6), 495–504.Google Scholar
  12. Balintoni, I., Balica, C., Ducea, M. N., Chen, F. K., Hann, H. P., & Sabliovschi, V. (2009b). Late Cambrian-Early Ordovician Gondwanan terranes in the Romanian Carpathians: A zircon U-Pb provenance study. Gondwana Research, 16(1), 119–133.Google Scholar
  13. Balintoni, I., Balica, C., Ducea, M. N., & Hann, H. P. (2014). Peri-Gondwanan terranes in the Romanian Carpathians: A review of their spatial distribution, origin, provenance, and evolution. Geoscience Frontiers, 5(3), 395–411.Google Scholar
  14. Balintoni, I., Balica, C., Ducea, M. N., Zaharia, L., Chen, F. K., Cliveti, M., et al. (2010). Late Cambrian-Ordovician northeastern Gondwanan terranes in the basement of the Apuseni Mountains, Romania. Journal of the Geological Society, 167(6), 1131–1145.Google Scholar
  15. Balintoni, I., & Gheuca, I. (1977). Progressive metamorphism, retrogressive metamorphism, and tectonics in Zugreni-Barnar region (Eastern Carpathians). Dări de Seamă ale Şedinţelor-Institutul de Geologie si Geofizică, 63, 11–38.Google Scholar
  16. Balintoni, I., Gheuca, I., & Voda, A. (1983). Alpine and Hercynian overthrust nappes from central and southern areas of the east Carpathians Crystallin-Mesozoic Zone. Anuarul Institutului Geologic al României, 60, 15–22.Google Scholar
  17. Balintoni, I., & Iancu, V. (1986). Lithostratigraphic and tectonic units in the Trascău Mountains, north of Mănăstirea Valley. Dări de Seamă ale Şedinţelor—Institutul de Geologie şi Geofizică, 70–71(5), 45–56.Google Scholar
  18. Balintoni, I., Mosonyi, E., & Puste, A. (1997). Informaţii si interpretari litostratigrafice, metamorfice si structurale privitoare la masivul Rodna (Carpaţii Orientali). Studia Universitatis Babeş-Bolyai, Geologia, 42(2), 51–66.Google Scholar
  19. Balintoni, I., Puşte, A., & Stan, R. (1996). The Codru nappe system and the Biharia nappe system: A comparative argumentation. Studia Universitatis Babeş-Bolyai, Geologia, 41(1), 101–113.Google Scholar
  20. Balla, Z. (1987). Tertiary palaeomagnetic data for the Carpatho-Pannonian region in the light of Miocene rotation kinematics. Tectonophysics, 139(12), 67–98.Google Scholar
  21. Bernhardt, H., Massonne, H., Reinecke, T., Reinhardt, J., & Willner, A. (1995). Digital element distribution maps, an aid for petrological investigations. Berichte der Deutschen Mineralogischen Gesellschaft, Beihefte zum European Journal of Mineralogy, 7(1), 28.Google Scholar
  22. Bleahu, M., & Dimitrescu, R. (1957). Stratigraphia şi tectonica Munţilor Apuseni (cu privire specială asupra cristalinului şi Mezozoicului). Analele Romîno-Sovietice, Seria Geologie-Geografie, 2, 29–42.Google Scholar
  23. Bleahu, M., Lupu, M., Patrulius, D., Bordea, S., Sţefan, A., Panin, S. (1981). The structure of the Apuseni Mountains. In: Carpatho-Balkan Geological Association, XII Congress (Bucharest, Romania). Guide to Excursion-B3,  Bucharest: Institute of Geology and Geophysics, Guide Book Series, 23, p. 103.Google Scholar
  24. Bortolotti, V., Marroni, M., Nicolae, I., Pandolfi, L., Principi, G., & Saccani, E. (2004). An update of the Jurassic ophiolites and associated calc-alkaline rocks in the South Apuseni Mountains (western Romania). Ofioliti, 29(1), 5–18.Google Scholar
  25. Bucur, I., & Săsăran, E. (2005). Micropaleontological assemblages from the Upper Jurassic-Lower Cretaceous deposits of Trascău Mountains and their biostratigraphic significance. Acta Paleontologica Romaniae, 5, 27–38.Google Scholar
  26. Ciulavu, M., Mählmann, R. F., Schmid, S. M., Hofmann, H., Seghedi, A., & Frey, M. (2008). Metamorphic evolution of a very low-to low-grade metamorphic core complex (Danubian window) in the South Carpathians. Geological Society, London, Special Publications, 298(1), 281–315.Google Scholar
  27. Corrie, S. L., & Kohn, M. J. (2008). Trace-element distributions in silicates during prograde metamorphic reactions: Implications for monazite formation. Journal of Metamorphic Geology, 26(4), 451–464.Google Scholar
  28. Csontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1–56.Google Scholar
  29. Culshaw, N., Mosonyi, E., & Reynolds, P. (2012). New 40 Ar/39 Ar laser single-grain ages of muscovites from mylonitic schists in the Rodna Mountains, Eastern Carpathians, Romania: Correlations with microstructure. International Journal of Earth Sciences, 101(1), 291–306.Google Scholar
  30. Dallmeyer, R. D., Neubauer, F., Handler, R., Fritz, H., Muller, W., Pană, D., & Putiš, M. (1996). Tectonothermal evolution of the internal Alps and Carpathians: Evidence from Ar-40/Ar-39 mineral and whole-rock data. Eclogae Geologicae Helvetiae, 89(1), 203–227.Google Scholar
  31. Dallmeyer, R. D., Pană, D. I., Neubauer, F., & Erdmer, P. (1999). Tectonothermal evolution of the Apuseni Mountains, Romania: Resolution of Variscan versus alpine events with 40Ar/39Ar ages. Journal of Geology, 107(3), 329–352.Google Scholar
  32. Denuţ, I. (1998). Caracterizarea structurii geologice Ţicău cu privire specială asupra petrologiei metamorfitelor. Ph.D. dissertation, Universitatea ”Babeş-Bolyai” Cluj-Napoca, Romania, p. 198.Google Scholar
  33. Dimitrescu, R. (1963). Asupra şisturilor cristaline din Nord-Vestul Transilvaniei (Outline of the crystalline rocks from NW Transylvania). Societatea de Sţiinte Naturale şi Geografie din Republica Socialistă România, Comunicări de Geologie, II, 147–154.Google Scholar
  34. Dimitrescu, R. (1966). Muntele Mare. Studiu geologic şi petrografic. Anuarul Comitetului de Stat al Geologiei, XXXV, 165–258.Google Scholar
  35. Dimitrescu, R. (1994). Les schistes cristallines des séries de Biharia et de Muncel dans le Bihor Méridional. Romanian Journal of Petrology, 76, 159–165.Google Scholar
  36. Dutch, R., & Hand, M. (2010). Retention of Sm–Nd isotopic ages in garnets subjected to high-grade thermal reworking: implications for diffusion rates of major and rare earth elements and the Sm–Nd closure temperature in garnet. Contributions to Mineralogy and Petrology, 159(1), 93–112.Google Scholar
  37. Erak, D., Matenco, L., Toljić, M., Stojadinović, U., Andriessen, P. A. M., Willingshofer, E., & Ducea, M. (2016). From nappe stacking to extensional detachments at the contact between the Carpathians and Dinarides—The Jastrebac Mountains of Central Serbia. Tectonophysics, 710, 162–183.Google Scholar
  38. Finger, F., Broska, I., Roberts, M. P., & Schermaier, A. (1998). Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American Mineralogist, 83(3–4), 248–258.Google Scholar
  39. Finger, F., Krenn, E., Schulz, B., Harlov, D., & Schiller, D. (2016). Satellite monazites in polymetamorphic basement rocks of the Alps: Their origin and petrological significance. American Mineralogist, 101(5), 1094–1103.Google Scholar
  40. Froitzheim, N., Plašienka, D., & Schuster, R. (2008). Alpine tectonics of the Alps and Western Carpathians. In: McCann, T. (Ed.), The Geology of Central Europe (Vol. 2, pp. 1141–1232). London: Geological Society.Google Scholar
  41. Gallhofer, D., von Quadt, A., Schmid, S. M., Guillong, M., Peytcheva, I., & Seghedi, I. (2017). Magmatic and tectonic history of Jurassic ophiolites and associated granitoids from the South Apuseni Mountains (Romania). Swiss Journal of Geosciences, 110, 699–719.Google Scholar
  42. Gröger, H. (2006). Thermal and structural evolution of the East Carpathians in northern Romania: from Cretaceous orogeny to final exhumation during Miocene collision. Ph.D. dissertation, University Basel, Switzerland, p. 132.Google Scholar
  43. Gröger, H., Fügenschuh, B., Tischler, M., Schmid, S., & Foeken, J. (2008). Tertiary cooling and exhumation history in the Maramures area (internal eastern Carpathians, northern Romania): thermochronology and structural data. Geological Society, London, Special Publications, 298(1), 169–195.Google Scholar
  44. Gröger, H., Tischler, M., Fügenschuh, B., & Schmid, S. (2013). Thermal history of Maramureş: Cretaceous metamorphism and exhumation (N Romania). Geologica Carpathica, 64(5), 383–398.Google Scholar
  45. Haas, J. (2013). Geology of Hungary. Berlin: Regional Geology Reviews, Springer Science., 246 p.Google Scholar
  46. Haas, J., Budai, T. (2014). Geology of the pre-Cenozoic basement of Hungary. Explanatory Notes for pre-Cenozoic Geological Map of Hungary (1:500.000). Geological and Geophysical Institute of Hungary, Budapest, Hungary.Google Scholar
  47. Haas, J., Kovács, S., Krystyn, L., & Lein, R. (1995). Significance of Late Permian Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics, 242(1–2), 19–40.Google Scholar
  48. Haas, J., & Péró, C. (2004). Mesozoic evolution of the Tisza Mega-unit. International Journal of Earth Sciences, 93, 297–313.Google Scholar
  49. Hârtopanu, I., & Hârtopanu, P. (1986). Intersecting Isogrades—a possible way to find out the polymetamorphism. An Example: The Someş Series. Dări de Seama ale Sedintelor-Institutul de Geologie si Geofizică, 70–71(5), 291–299.Google Scholar
  50. Hârtopanu, I., Hârtopanu, P., Balintoni, I., Borcoş, M., Lupu, M., Rusu, A. (1982). Foaia Valea Ierii, Harta Geologică a României, sc. 1:50.000. Bucureşti: Institutul de Geologie şi Geofizică.Google Scholar
  51. Henry, D. J., & Guidotti, C. V. (2002). Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls, and petrologic applications. American Mineralogist, 87(4), 375–382.Google Scholar
  52. Henry, D. J., Guidotti, C. V., & Thomson, J. A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2–3), 316–328.Google Scholar
  53. Hoinkes, G., Koller, F., Rantitsch, G., Dachs, E., Hoeck, V., Neubauer, F., et al. (1999). Alpine metamorphism of the Eastern Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 79(1), 155–181.Google Scholar
  54. Hölzl, S., Köhler, H., Kröner, A., Jaeckel, P., & Liew, T. (1991). Geochronology of the Sri Lankan basement (Vol. 5). Professional Paper: Geological Survey Department of Sri Lanka.Google Scholar
  55. Horváth, P., & Árkai, P. (2002). Pressure-temperature path of metapelites from the Algyő-Ferencszállás area, SE Hungary: thermobarometric constraints from coexisting mineral assemblages and garnet zoning. Acta Geologica Hungarica, 45(1), 1–27.Google Scholar
  56. Iancu, V., Berza, T., Seghedi, A., Gheuca, I., & Hann, H. P. (2005). Alpine polyphase tectono-metamorphic evolution of the South Carpathians: A new overview. Tectonophysics, 410(14), 337–365.Google Scholar
  57. Ianovici, V., Borcoş, M., Bleahu, M., Patrulius, D., Lupu, M., Dimitrescu, R., Savu, H. (1976). Geology of the Apuseni Mountains. (pp. 631), Bucureşti: Editura Academiei R.S.R.Google Scholar
  58. Janák, M., Froitzheim, N., Lupták, B., Vrabec, M., & Ravna, E. J. K. (2004). First evidence for ultrahigh-pressure metamorphism of eclogites in Pohorje, Slovenia: Tracing deep continental subduction in the Eastern Alps. Tectonics, 23(5), 10. Scholar
  59. Janák, M., Froitzheim, N., Yoshida, K., Sasinková, V., Nosko, M., Kobayashi, T., et al. (2015). Diamond in metasedimentary crustal rocks from Pohorje, Eastern Alps: a window to deep continental subduction. Journal of Metamorphic Geology, 33(5), 495–512.Google Scholar
  60. Janots, E., Brunet, F., Goffé, B., Poinssot, C., Burchard, M., & Cemič, L. (2007). Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology, 154(1), 1–14. Scholar
  61. Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J. O., & Spandler, C. (2008). Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610°C. Journal of Metamorphic Geology, 26(5), 509–526.Google Scholar
  62. Jeřábek, P., Lexa, O., Schulmann, K., & Plašienka, D. (2012). Inverse ductile thinning via lower crustal flow and fold-induced doming in the West Carpathian Eo-Alpine collisional wedge. Tectonics, 31, 5. Scholar
  63. Kalmár, J. (1994). Outlines of geology of the metamorphic basement of the Sălaj (Szilágy) Basin, Romania. Acta Geologica Hungarica, 37, 3–4.Google Scholar
  64. Kalmár, J. (1996). A Szilágysomlyói Măgura (Măgura Şimleului, România) földtani felépítése. Földtani Közlöny, 126, 41-65.Google Scholar
  65. Kalmár, J., & Kovaćs-Pálffy, P. (1996). The Ţicău Hills (NW Transylvanie-Rumania) lithostratigraphy and petrology of the metamorphic rocks. Geologica Carpathica, 47, 239–244.Google Scholar
  66. Kohn, M. J., & Malloy, M. A. (2004). Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determinations. Geochimica et Cosmochimica Acta, 68(1), 101–113.Google Scholar
  67. Koroknai, B., Horváth, P., Balogh, K., & Dunkl, I. (2001). Alpine metamorphic evolution and cooling history of the Veporic basement in northern Hungary: new petrological and geochronological constraints. International Journal of Earth Sciences, 90(3), 740–751.Google Scholar
  68. Kounov, A., & Schmid, S. (2013). Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania). International Journal of Earth Sciences, 102, 207–233.Google Scholar
  69. Kounov, A., Seward, D., Burg, J. P., Bernoulli, D., Ivanov, Z., & Handler, R. (2010). Geochronological and structural constraints on the Cretaceous thermotectonic evolution of the Kraishte zone, western Bulgaria. Tectonics, 29, 2. Scholar
  70. Kräutner, H. G., Kräutner, F., Tănăsescu, A., & Neacşu, V. (1976). Interprétation des âges radiométriques K/Ar pour les roches métamorphiques régénérées. Un exemple-les Carpates orientales. Anuarul Institutului de Geologie si Geofizică, 50, 167–229.Google Scholar
  71. Krenn, E., & Finger, F. (2007). Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: Microprobe data and geochronological implications. Lithos, 95(1), 130–147.Google Scholar
  72. Lelkes-Felvári, G., Árkai, P., Sassi, F. P., & Balogh, K. (1996). Main features of the regional metamorphic events in Hungary: A review. Geologica Carpathica, 47(4), 257–270.Google Scholar
  73. Lelkes-Felvári, G., Frank, W., & Schuster, R. (2003). Geochronological constraints of the Variscan, Permian-Triassic and eo-Alpine (Cretaceous) evolution of the Great Hungarian Plain basement. Geologica Carpathica, 54(5), 299–316.Google Scholar
  74. Lelkes-Felvári, G., Mazzoli, C., & Visona, D. (1989). Contrasting mineral assemblages in polymetamorphic rocks from South Transdanubia (Hungary). European Journal of Mineralogy, 1, 143–146.Google Scholar
  75. Lelkes-Felvári, G., Schuster, R., Frank, W., & Sassi, R. (2005). Metamorphic history of the Algyő High (Tisza Mega-unit, basement of Great Hungarian Plain)—a counterpart of crystalline units of the Koralpe-Wölz nappe system (Austroalpine, Eastern Alps). Acta Geologica Hungarica, 48(4), 371–394.Google Scholar
  76. Lorinczi, P., & Houseman, G. (2010). Geodynamical models of lithospheric deformation, rotation and extension of the Pannonian Basin of Central Europe. Tectonophysics, 492(1–4), 73–87.Google Scholar
  77. Ludwig, K. (2012). User manual for Isoplot version 3.75–4.15: a geochronological toolkit for Microsoft Excel. Berkley Geochronological Center Special Publication, 5, p. 75,
  78. Márton, E. (2000). The Tisza Megatectonic Unit in the light of palaeomagnetic data. Acta Geologica Hungarica, 43, 329–343.Google Scholar
  79. Márton, E., & Fodor, L. (2003). Tertiary paleomagnetic results and structural analysis from the Transdanubian Range (Hungary): rotational disintegration of the Alcapa unit. Tectonophysics, 363, 201–224.Google Scholar
  80. Márton, E., Tischler, M., Csontos, L., Fügenschuh, B., & Schmid, S. M. (2007). The contact zone between the ALCAPA and Tisza-Dacia megatectonic units of Northern Romania in the light of new paleomagnetic data. Swiss Journal of Geosciences, 100(1), 109–124.Google Scholar
  81. Mârza, I. (1965). Unitatea Petrografică şi Paleostratigrafică a masivelor de carbonaţi metamorfici: Vulturese-Scărişoara-Leurda (Bazinul Arieşului). Analele Universităţii Bucureşti: Seria ştiinţele naturii Geologie-Geografie, 14, 9–17.Google Scholar
  82. Mârza, I. (1969). Evoluţia unităţilor cristaline din sud-estul Muntelui Mare. Bucharest: Editura Academiei Republicii Socialiste România, 1Google Scholar
  83. McCulloch, M., & Wasserburg, G. (1978). Sm–Nd and Rb–Sr Chronology of Continental Crust Formation. Science, 200(4345), 1003–1011.Google Scholar
  84. Mezger, K., Essene, E., & Halliday, A. (1992). Closure temperatures of the Sm-Nd system in metamorphic garnets. Earth and Planetary Science Letters, 113(3), 397–409.Google Scholar
  85. Mosonyi, E. (1999). Geological and structural studies on metamorphics from the southern part of Rodna Mountains (East Carpathians). Ph.D. dissertation, University Babeş-Bolyai, Cluj-Napoca, Romania, p. 276.Google Scholar
  86. Mosonyi, E., & Kristály, F. (2014). A Possible Permo-Triassic Thermo-Tectonic Event in Rodna Mts (East Carpathians, Romania). Buletini i Shkencave Gjeologjike, Special Issue, 1, 205–208.Google Scholar
  87. Munteanu, M., & Tatu, M. (2003). The East-Carpathian crystalline-mesozoic zone (Romania): paleozoic amalgamation of Gondwana-and East European craton derived terranes. Gondwana Research, 6(2), 185–196.Google Scholar
  88. Necea, D. (2010). High-resolution morpho-tectonic profiling across an orogen: tectonic-controlled geomorphology and multiple dating approach in the SE Carpathians. Ph.D. dissertation, ISBN 9789086594320, Vrije Universiteit, Amsterdam, Netherlands, p. 147.Google Scholar
  89. Negulescu, E., Săbău, G., & Massonne, H. J. (2018). Growth of chloritoid and garnet along a nearly isothermal burial path to 70 km depth: an example from the Bughea Metamorphic Complex, Leaota Massif, South Carpathians. Mineralogy and Petrology, 112(4), 535-553. Scholar
  90. Nicolae, I., Soroiu, M., & Bonhomme, G. (1992). Ages K-Ar de quelques ophiolites des Monts Apuseni du sud (Roumanie) et leur signification géologique. Géologie Alpine, 68, 77–83.Google Scholar
  91. Pană, D., & Balintoni, I. (2000). Igneous protoliths of the Biharia lithotectonic assemblage: timing of intrusion, geochemical consideration, tectonic setting. Studia Universitatis Babeş-Bolyai, Geologia, 45(1), 3–22.Google Scholar
  92. Pană, D. I., Heaman, L. M., Creaser, R. A., & Erdmer, P. (2002). Pre-alpine crust in the Apuseni Mountains, Romania: Insights from Sm-Nd and U-Pb data. Journal of Geology, 110(3), 341–354.Google Scholar
  93. Pătraşcu, S., Panaiotu, C., Sȩclăman, M., & Panaiotu, C. E. (1994). Timing of rotational motion of Apuseni mountains (Romania): paleomagnetic data from Tertiary magmatic rocks. Tectonophysics, 233, 163–176.Google Scholar
  94. Pavelescu, L., Pop, G., Ailenei, G., Ene, I., Soroiu, M., & Popescu, G. (1975). K-Ar age determinations from the Apuseni and Banat Mountains. Revue Roumaine de Géologie, Géophysique et Géographie, 19, 67–69.Google Scholar
  95. Pozsgai, E., Józsa, S., Dunkl, I., Sebe, K., Thamó-Bozsó, E., Sajó, I., et al. (2017). Provenance of the Upper Triassic siliciclastics of the Mecsek Mountains and Villány Hills (Pannonian Basin, Hungary): constraints to the early Mesozoic paleogeography of the Tisza Megaunit. International Journal of Earth Sciences, 106(6), 2005–2024.Google Scholar
  96. Pyle, J. M., Spear, F. S., Cheney, J. T., & Layne, G. (2005). Monazite ages in the Chesham Pond Nappe, SW New Hampshire, USA: Implications for assembly of central New England thrust sheets. American Mineralogist, 90(4), 592–606.Google Scholar
  97. Radu, D. (1997). Geothermometry of metapelitic rocks from the western part of Preluca crystalline complex, Maramureş. Romanian Journal of Mineralogy, 78, 21–30.Google Scholar
  98. Radu, D. (2003). Evoluia termobarică a rocilor metamorfice din masivele Preluca, Ţicău şi Codru, NV Transilvaniei. Ph.D. dissertation, Bucharest University, Romania, p. 222.Google Scholar
  99. Reiser, M. K. (2015). The tectonometamorphic evolution of the Apuseni Mountains during the Cretaceous. Ph.D. dissertation, urn:nbn:at:at-ubi:1-2287, University of Innsbruck, Austria, p. 168.Google Scholar
  100. Reiser, M. K., Schuster, R., Spikings, R., Tropper, P., & Fügenschuh, B. (2017a). From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania). International Journal of Earth Sciences, 106, 659–685.Google Scholar
  101. Reiser, M. K., Schuster, R., Tropper, P., & Fügenschuh, B. (2017b). Constraints on the depositional age and tectonometamorphic evolution of marbles from the Biharia Nappe System (Apuseni Mountains, Romania). Geologica Carpathica, 68(2), 147–164.Google Scholar
  102. Săndulescu, M. (1984). Geotectonics of Romania (p. 343).  Bucharest: Editura Tehnică.Google Scholar
  103. Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., et al. (2008). The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101(1), 139–183.Google Scholar
  104. Schuller, V. (2004). Evolution and geodynamic significance of the Upper Cretaceous Gosau basin in the Apuseni Mountains (Romania). Ph.D. dissertation, Tübinger geowissenschaftliche Arbeiten Reihe A70, Universität Tübingen, Germany, p. 122.Google Scholar
  105. Schuller, V., Frisch, W., Danisik, M., Dunkl, I., & Melinte, M. C. (2009). Upper Cretaceous Gosau Deposits of the Apuseni Mountains (Romania)—similarities and differences to the Eastern Alps. Austrian Journal of Earth Sciences, 102(1), 133–145.Google Scholar
  106. Schulz, B. (2016). Polymetamorphism in garnet micaschists of the Saualpe Eclogite Unit (Eastern Alps, Austria), resolved by automated SEM methods and EMP–Th–U–Pb monazite dating. Journal of Metamorphic Geology, 35(2), 141–163.Google Scholar
  107. Schuster, R., Koller, F., Hoeck, V., Hoinkes, G., & Bousquet, R. (2004). Explanatory notes to the map: metamorphic structure of the Alps-Metamorphic evolution of the Eastern Alps. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 149, 175–199.Google Scholar
  108. Schuster, R., & Stüwe, K. (2008). Permian metamorphic event in the Alps. Geology, 36(8), 603–606.Google Scholar
  109. Schuster, R., Tropper, P., Krenn, E., Finger, F., Frank, W., & Philippitsch, R. (2015). Prograde Permo-Triassic metamorphic HT/LP assemblages from the Austroalpine Jenig Complex (Carinthia, Austria). Austrian Journal of Earth Sciences, 108(1), 73–90.Google Scholar
  110. Smith, H. A., & Barreiro, B. (1990). Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists. Contributions to Mineralogy and Petrology, 105(5), 602–615.Google Scholar
  111. Soroiu, M., Balintoni, I., & Vodă, A. (1985). A model of the basement of the Transylvanian Basin as revealed by K-Ar dating. Revue Roumaine de Géologie, Géophysique et Géographie, 29, 29–35.Google Scholar
  112. Spear, F. S. (2010). Monazite-allanite phase relations in metapelites. Chemical Geology, 279(1), 55–62.Google Scholar
  113. Spear, F. S., & Pyle, J. M. (2010). Theoretical modeling of monazite growth in a low-Ca metapelite. Chemical Geology, 273(1–2), 111–119.Google Scholar
  114. Strutinski, C., Puşte, A., & Stan, R. (2006). The metamorphic basement of Romanian Carpathians: a discussion of K-Ar and 40Ar/39Ar ages. Studia Universitatis Babe-Bolyai, Geologia, 51(1–2), 15–21.Google Scholar
  115. Szederkényi, T., Haas, J., Nagymarosy, A., & Hámor, G. (2012). Geology and History of Evolution of the Tisza Mega-Unit. In J. Haas (Ed.), Geology of Hungary (pp. 103–148). Berlin, Heidelberg: Springer Science.Google Scholar
  116. Thomsen, T. B., Heijboer, T., & Guarnieri, P. (2016). jAgeDisplay: software for evaluation of data distributions in U-Th-Pb geochronology. Geological Survey of Denmark and Greenland Bulletin, 35, 103–106.Google Scholar
  117. Thöni, M. (2002). Sm-Nd isotope systematics in garnet from different lithologies (Eastern Alps): age results, and an evaluation of potential problems for garnet Sm–Nd chronometry. Chemical Geology, 185(3), 255–281.Google Scholar
  118. Thöni, M., & Miller, C. (2009). The Permian event in the Eastern European Alps: Sm–Nd and P-T data recorded by multi-stage garnet from the Plankogel unit. Chemical Geology, 260(1–2), 20–36.Google Scholar
  119. Thöni, M., Miller, C., Zanetti, A., Habler, G., & Goessler, W. (2008). Sm-Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICPMS and EPMA data constrain multiple Permian-Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chemical Geology, 254(3), 216–237.Google Scholar
  120. Tischler, M., Gröger, H., Fügenschuh, B., & Schmid, S. (2007). Miocene tectonics of the Maramures area (Northern Romania): implications for the Mid-Hungarian fault zone. International Journal of Earth Sciences, 96(3), 473–496.Google Scholar
  121. Tischler, M., Matenco, L., Filipescu, S., Gröger, H. R., Wetzel, A., & Fügenschuh, B. (2008). Tectonics and sedimentation during convergence of the ALCAPA and Tisza-Dacia continental blocks: The Pienide nappe emplacement and its foredeep (N. Romania). Geological Society, London, Special Publications, 298(1), 317–334.Google Scholar
  122. Tuccillo, M., Essene, E., & Van Der Pluijm, B. (1990). Growth and retrograde zoning in garnets from high-grade, metapelites: Implications for pressure-temperature paths. Geology, 18(9), 839–842.Google Scholar
  123. Udubaşa, G., Hârtopanu, P., Ilinca, G., & Valdman, S. (1996). The regionally metamorphosed Mn-Fe deposit at Răzoare, Preluca Mts., Romania. Romanian Journal of Mineral Deposits, 77, 3–20.Google Scholar
  124. Ustaszewski, K., Schmid, S. M., Fügenschuh, B., Tischler, M., Kissling, E., & Spakman, W. (2008). A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene. Swiss Journal of Geosciences, 101(1), 273–294.Google Scholar
  125. van Gelder, I., Matenco, L., Willingshofer, E., Tomljenović, B., Andriessen, P. A. M., Ducea, M., et al. (2015). The tectonic evolution of a critical segment of the Dinarides-Alps connection: Kinematic and geochronological inferences from the Medvednica Mountains, NE Croatia. Tectonics, 34, 1952–1978.Google Scholar
  126. Vojtko, R., Králiková, S., Andriessen, P., Prokešová, R., Minár, J., & Jěrábek, P. (2017). Geological evolution of the southwestern part of the Veporic Unit (Western Carpathians): based on fission track and morphotectonic data. Geologica Carpathica, 68(4), 285–302.Google Scholar
  127. Vojtko, R., Králiková, S., Jěrábek, P., Schuster, R., Danišík, M., Fügenschuh, B., et al. (2016). Geochronological evidence for the Alpine tectono-thermal evolution of the Veporic Unit (Western Carpathians, Slovakia). Tectonophysics, 666, 48–65.Google Scholar
  128. Whitney, D., & Evans, B. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185.Google Scholar
  129. Wing, B. A., Ferry, J. M., & Harrison, T. M. (2003). Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology, 145(2), 228–250.Google Scholar
  130. Zimmerman, A., Stein, H. J., Hannah, J. L., Kozelj, D., Bogdanov, K., & Berza, T. (2008). Tectonic configuration of the Apuseni-Banat-Timok-Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re-Os molybdenite ages. Mineralium Deposita, 43(1), 1–21.Google Scholar
  131. Zincenco, D., Soroiu, M., & Cuna, S. (1990). Cretaceous thermal front on pre-Mesozoic continental crust, documented by K-Ar data: an example, The Sylvanic belts, NW Transylvania. Revue Roumaine de Géologie, Géophysique et Géographie, 34, 95–105.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.Institut für Geologie, Universität InnsbruckInnsbruckAustria
  2. 2.Geological Institute of RomaniaBucharestRomania
  3. 3.Geologische BundesanstaltViennaAustria
  4. 4.Institut für Mineralogie und PetrographieUniversität InnsbruckInnsbruckAustria

Personalised recommendations