Swiss Journal of Geosciences

, Volume 111, Issue 3, pp 445–460 | Cite as

Environmental changes and carbon cycle perturbations at the Triassic–Jurassic boundary in northern Switzerland

  • Nathan LooserEmail author
  • Elke Schneebeli-Hermann
  • Heinz Furrer
  • Thomas M. Blattmann
  • Stefano M. Bernasconi


The Triassic–Jurassic boundary is characterized by strong perturbations of the global carbon cycle, triggered by massive volcanic eruptions related to the onset of the Central Atlantic Magmatic Province. These perturbations are recorded by negative carbon isotope excursions (CIEs) which have been reported worldwide. In this study, Triassic–Jurassic boundary sections from the southern margin of the Central European Basin (CEB) located in northern Switzerland are analyzed for organic carbon and nitrogen isotopes in combination with particulate organic matter (POM) analyses. We reconstruct the evolution of the depositional environment from Late Triassic to Early Jurassic in northern Switzerland and show that observed negative shifts in δ13C of the total organic carbon (δ13CTOC) in the sediment are only subordinately influenced by varying organic matter (OM) composition and primarily reflect global changes in the carbon cycle. Based on palynology and the stratigraphic positions of isotopic shifts, the δ13CTOC record of the studied sections is correlated with the GSSP section at Kuhjoch (Tethyan realm) in Austria and with the St. Audrie’s Bay section (CEB realm) in southwest England. We also show that in contrast to POM analyses the applicability of organic carbon/total nitrogen (OC/TN) atomic ratios and stable isotopes of total nitrogen (δ15NTN) for detecting changes in source of OM is limited in marginal depositional environments with frequent changes in lithology and OM contents.


Triassic–Jurassic boundary Northern Switzerland Stable carbon and nitrogen isotope geochemistry Sedimentology Palynology Chemostratigraphy 



We would like to thank Stewart Bishop and Madalina Jaggi for assistance in the laboratory and Stefan Wohlwend as well as André Strasser and an anonymous reviewer for their suggestions to improve this manuscript. We would also like to thank the University of Basel and the national cooperative for the disposal of radioactive waste of Switzerland (NAGRA) for access to core material.

Supplementary material

15_2018_315_MOESM1_ESM.pdf (86 kb)
Online Resource 1: Stratigraphic column and results for the Adlerberg 3 core. Information about the palynological associations and stages are from Schneebeli-Hermann et al. (2018). Thick grey lines show three-point moving averages (PDF 86 kb)
15_2018_315_MOESM2_ESM.pdf (166 kb)
Online Resource 2: Stratigraphic column and results for the Chilchzimmersattel outcrop. Stratigraphic information is from Jordan et al. (2016). Information about the palynological associations and stages are from Schneebeli-Hermann et al. (2018). Thick grey lines show three-point moving averages (PDF 166 kb)
15_2018_315_MOESM3_ESM.pdf (90 kb)
Online Resource 3: Stratigraphic column and results for the Frick outcrop. Thick grey lines show three-point moving averages (PDF 89 kb)


  1. Arthur, M. A., Dean, W. E., & Claypool, G. E. (1985). Anomalous enrichment in modern marine organic carbon. Nature, 315, 216–218.CrossRefGoogle Scholar
  2. Bacon, K. L., Belcher, C. M., Hesselbo, S. P., & McElwain, J. C. (2011). The Triassic–Jurassic boundary carbon isotope excursions expressed in taxonomically identified leaf cuticles. Palaios, 26, 461–469.CrossRefGoogle Scholar
  3. Bartolini, A., Guex, J., Spangenberg, J. E., Schoene, B., Taylor, D. G., Schaltegger, U., et al. (2012). Disentangling the Hettangian carbon isotope record: implications for the aftermath of the end-Triassic mass extinction. Geochemistry, Geophysics, Geosystems, 13, 1–11.CrossRefGoogle Scholar
  4. Beerling, D. J., & Berner, R. A. (2002). Biogeochemical constraints on the Triassic–Jurassic boundary carbon cycle event. Global Biogeochemical Cycles, 16, 3.CrossRefGoogle Scholar
  5. Bonis, N. R., Ruhl, M., & Kürschner, W. M. (2010). Climate change driven black shale deposition during the end-Triassic in the western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 151–159.CrossRefGoogle Scholar
  6. Cifuentes, L. A., Coffins, R. B., Slolrzano, L., Cardenas, W., Espinoza, J., & Teilley, R. R. (1996). Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary. Estuarine, Coastal and Shelf Science, 43, 781–800.CrossRefGoogle Scholar
  7. Črne, A. E., Weissert, H., Gorican, S., & Bernasconi, S. M. (2011). A biocalcification crisis at the Triassic–Jurassic boundary recorded in the Budva Basin (Dinarides, Montenegro). Geological Society of America Bulletin, 123, 40–50.CrossRefGoogle Scholar
  8. Etter, W. (2016) Palaeoecology of the lower Jurassic Schambelen member of northern Switzerland. Swiss Geoscience Meeting, abstract volume, pp 144–145.Google Scholar
  9. Felber, R., Weissert, H. J., Furrer, H., & Bontognali, T. R. R. (2015). The Triassic–Jurassic boundary in the shallow-water marine carbonates from the western Northern Calcareous Alps (Austria). Swiss Journal of Geosciences, 108, 213–224.CrossRefGoogle Scholar
  10. Fischer, J., Voigt, S., Franz, M., Schneider, J., Joachimski, M., Tichomirowa, M., et al. (2012). Palaeoenvironments of the late Triassic Rhaetian Sea: Implications from oxygen and strontium isotopes of hybodont shark teeth. Palaeogeography, Palaeoclimatology, Palaeoecology, 353–355, 60–72.CrossRefGoogle Scholar
  11. Galli, M. T., Jadoul, F., Bernasconi, S. M., & Weissert, H. (2005). Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 216, 203–214.CrossRefGoogle Scholar
  12. Guex, J., Bartolini, A., Atudorei, V., & Taylor, D. (2004). High-resolution ammonite and carbon isotope stratigraphy across the Triassic–Jurassic boundary at New York Canyon (Nevada). Earth and Planetary Science Letters, 225, 29–41.CrossRefGoogle Scholar
  13. Hallam, A. (2001). A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 23–37.CrossRefGoogle Scholar
  14. Hayes, J. M., Strauss, H., & Kaufman, A. J. (1999). The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology, 161, 103–125.CrossRefGoogle Scholar
  15. Heer, O. (1865). Die Urwelt der Schweiz. Zürich: Schulthess.Google Scholar
  16. Hesselbo, S. P., Robinson, S. A., & Surlyk, F. (2004). Sea-level change and facies development across potential Triassic–Jurassic boundary horizons, SW Britain. Journal of the Geological Society, London, 161, 365–379.CrossRefGoogle Scholar
  17. Hesselbo, S. P., Robinson, S. A., Surlyk, F., & Piasecki, S. (2002). Terrestrial and marine extinction at the Triassic–Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology, 30, 251–254.CrossRefGoogle Scholar
  18. Jordan, P. (1983). Zur Stratigraphie des Lias zwischen Unterem Hauenstein und Schinznach (Solothurner und Aargauer Faltenjura). Eclogae Geologicae Helvetiae, 76, 355–379.Google Scholar
  19. Jordan, P., Pietsch, J. S., Bläsi, H., Furrer, H., Kündig, N., Looser, N., et al. (2016). The middle to late Triassic Bänkerjoch and Klettgau formations of northern Switzerland. Swiss Journal of Geoscience, 109(2), 257–284.CrossRefGoogle Scholar
  20. Killops, S., Killops, V. (2005). Introduction to organic geochemistry, 2nd edition. Oxford: Blackwell Publishing.Google Scholar
  21. Kump, L. R., & Arthur, M. A. (1999). Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, 161, 181–198.CrossRefGoogle Scholar
  22. Lauber, L. (1991). Bahn 2000, Abschnitt Muttenz—Sissach, Los 1.2, Adlertunnel (Bauprojekt), Geologischer Bericht. Geologisches Institut, Universität Basel, Basel.Google Scholar
  23. Lehmann, M. F., Bernasconi, S. M., Barbieri, A., & McKenzie, J. A. (2002). Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 66, 3573–3584.CrossRefGoogle Scholar
  24. Lindström, S., van de Schootbrugge, B., Dybkjær, K., Pedersen, G. K., Fiebig, J., Nielsen, L. H., et al. (2012). No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass-extinction. Geology, 40, 531–534.CrossRefGoogle Scholar
  25. Lindström, S., van de Schootbrugge, B., Hansen, K. H., Pedersen, G. K., Alsen, P., Thibault, N., et al. (2017). A new correlation of Triassic–Jurassic boundary successions in NW Europe, Nevada and Peru, and the Central Atlantik Magmatic Province: A time-line for the end-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 80–102.CrossRefGoogle Scholar
  26. Matter, A., Peters, T., Bläsi, H. R., Meyer, J., Ischi, H., & Meyer, C. (1988). Sondierbohrung Weiach Untersuchungsbericht (Gemeinde Weiach, Kanton Zürich, Schweiz), Textband. Nagra Technischer Bericht, NTB 88-08. Beiträge zur Geologie der Schweiz, Geotechnische Serie, 73, 1–183.Google Scholar
  27. McElwain, J. C., Wagner, P. J., & Hesselbo, S. P. (2009). Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in East Greanland. Science, 324, 1554–1556.CrossRefGoogle Scholar
  28. Meyers, P. A. (1994). Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114, 289–302.CrossRefGoogle Scholar
  29. Ogrinc, N., Fontolan, G., Faganeli, J., & Covelli, S. (2005). Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): indicators of sources and preservation. Marine Chemistry, 95, 163–181.CrossRefGoogle Scholar
  30. Pálfy, J., Demény, A., Haas, J., Hetényi, M., Orchard, M. J., & Vetö, I. (2001). Carbon isotope anomaly and other geochemical changes at the Triassic–Jurassic boundary from a marine section in Hungary. Geology, 29, 1047–1050.CrossRefGoogle Scholar
  31. Redfield, A. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In Daniel, R.J. (ed James Johnstone Memorial Volume), University Press of Liverpool, pp 177–192.Google Scholar
  32. Reisdorf, A. G., Wetzel, A., Schlatter, R., & Jordan, P. (2011). The Staffelegg Formation: a new stratigraphic scheme for the Early Jurassic of northern Switzerland. Swiss Journal of Geosciences, 104, 97–146.CrossRefGoogle Scholar
  33. Robinson, R. S., Kienast, M., Luiza Albuquerque, A. L., Altabet, M., Contreras, S., De Pol Holz, R., et al. (2012). A review of nitrogen isotopic alteration in marine sediments. Paleoceanography, 27, PA4203.CrossRefGoogle Scholar
  34. Ruhl, M., Kürschner, W. M., & Krystyn, L. (2009). Triassic–Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria). Earth and Planetary Science Letters, 281, 169–187.CrossRefGoogle Scholar
  35. Sander, P. M. (1992). The Norian Plateosaurus bonebeds of central Europe and their taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology, 93, 255–299.CrossRefGoogle Scholar
  36. Scheffer, F., &Schachtschabel, P. (1984). Lehrbuch der Bodenkunde. Stuttgart: Enke Verlag.Google Scholar
  37. Schneebeli-Hermann, E., Looser, N., Hochuli, P. A., Furrer, H., Reisdorf, A. G., Wetzel, A., et al. (2018). Palynology of Triassic–Jurassic boundary sections in Northern Switzerland. Swiss Journal of Geosciences, 111, 99–115.CrossRefGoogle Scholar
  38. Schubert, C. J., & Calvert, S. E. (2001). Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep-Sea Research I, 48, 789–810.CrossRefGoogle Scholar
  39. Schwab, V. F., & Spangenberg, J. E. (2007). Molecular and isotopic characterization of biomarkers in the Frick Swiss Jura sediments: A palaeoenvironmental reconstruction on the northern Tethys margin. Organic Geochemistry, 38, 419–439.CrossRefGoogle Scholar
  40. Sepkoski, J. J. (1996). Patterns of the Phanerozoic extinction: A perspective from global data bases. In O. H. Walliser (Ed.), Global events and event stratigraphy in the Phanerozoic (pp. 35–51). Berlin: Springer.CrossRefGoogle Scholar
  41. Stampfli, G. M., Kozur, H. W. (2006). Europe from the Variscan to the Alpine cycles. Gee, D.G., Stephenson, R.A. (Eds.), European lithosphere dynamics. Geological Society Memoir 32, pp. 333–343.Google Scholar
  42. Traverse, A. (2007). Paleopalynology. Dordrecht: Springer.Google Scholar
  43. Visscher, H., & Van Der Zwan, W. A. (1981). Palynology of the circum-Mediterranean Triassic: phytogeographical and palaeoclimatological implications. Geologische Rundschau, 70, 625–636.CrossRefGoogle Scholar
  44. Ziegler, P. A. (1990). Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij B.V (2nd ed.). Bath: Geological Society Publishing House.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesETH ZurichZurichSwitzerland
  2. 2.Institute and Museum of PaleontologyUniversity of ZurichZurichSwitzerland

Personalised recommendations