Advertisement

Swiss Journal of Geosciences

, Volume 111, Issue 3, pp 447–472 | Cite as

Dolomitization of the Upper Jurassic carbonate rocks in the Geneva Basin, Switzerland and France

  • Yasin Makhloufi
  • Elme Rusillon
  • Maud Brentini
  • Andrea Moscariello
  • Michel Meyer
  • Elias Samankassou
Article
  • 109 Downloads

Abstract

The Upper Jurassic carbonates represent important potential targeted reservoirs for geothermal energy in the Geneva Basin (Switzerland and France). Horizons affected by dolomitization, the focus of the present study, are of particular interest because they proved to be productive in time-equivalent deposits currently exploited in Southern Germany. The study is based on sub-surface samples and outcrops in the Geneva Basin. Petrographic analyses allowed to constrain the paragenesis of the Upper Jurassic units prior to discussing the cause(s) and effect(s) of dolomitization. Data reveal that the facies are affected by early and late diagenesis. All samples show at least two stages of burial blocky calcite cementation with the exception of those from the sub-surface, which display an incomplete burial blocky cementation preserving primary intercrystalline porosity. Dolomitization affected all units. The results point to an early dolomitization event, under the form of replacement dolomite. Dedolomitization, through calcitization and/or dissolution, is an important process, creating secondary pore space. Results of the present study favor a reflux model for dolomitization rather than the mixing-zone model suggested in earlier work. However, considering the geodynamic context, other dolomitization models cannot be excluded for the subsurface. The presence of secondary pore space might contribute to the connectivity of the porous network providing enhanced reservoir properties. These results are a first step towards a better understanding of the diagenetic history of the Upper Jurassic in the Geneva Basin. Moreover, it provides a reasonable framework for further geochemical analyses to constrain the nature and timing of fluid migration. The paragenesis and the dolomitization model hold the potential to help in ongoing exploration for geothermal energy beyond the Geneva Basin.

Keywords

Geneva Basin Kimmeridgian Diagenesis Dolomitization Dedolomitization 

Notes

Acknowledgements

This work was funded by the SIG (Services Industriels de Genève) as a part of the GEothermy 2020 project. We would like to thank Carsten Reinhold (Rhein Petroleum, Germany) and Anneleen Foubert (Fribourg, Switzerland) for their constructive suggestions. We thank François Gischig, Nino Isabella Valenzi and Agathe Martignier from the Department of Earth Sciences, University of Geneva, Switzerland, for their help with thin sections manufacturing, thin section staining, and S.E.M. imaging, respectively. We thank Patrick Marques (Total) and Damien DoCouto (University of Geneva) for organizing the Humilly-2 core display at the Total core library (Boussens, France). Jérôme Chablais (HydroGeo, Geneva) and Nicolas Clerc (GESDEC, Geneva) were helpful in the field.

References

  1. Adabi, M. H. (2009). Multistage dolomitization of upper Jurassic Mozduran Formation, Kopet-Dagh Basin, N.E. Iran. Carbonates and Evaporites, 24(1), 16–32.  https://doi.org/10.1007/BF03228054.CrossRefGoogle Scholar
  2. Adams, J. E., & Rhodes, M. L. (1960). Dolomitization by seepage refluxion. AAPG Bulletin, 44(12), 1912–1920.Google Scholar
  3. Alexandersson, T. (1972). Micritization of carbonate particles: Processes of precipitation and dissolution in modern shallow-marine sediments. Universitet Uppsala, Geologiska Institut Bulletin, 7(3), 201–236.Google Scholar
  4. André, F. (1962). Etude paléontologique de la formation récifale de Plagne (Ain). Ph.D. dissertation, Université Pierre et Marie Curie, Paris 6, France.Google Scholar
  5. Arvidson, R. S., & Mackenzie, F. T. (1999). The dolomite problem; control of precipitation kinetics by temperature and saturation state. American Journal of Science, 299(4), 257–288.CrossRefGoogle Scholar
  6. Ayora, C., Taberner, C., Saaltink, M. W., & Carrera, J. (1998). The genesis of dedolomites: a discussion based on reactive transport modeling. Journal of Hydrology, 209(1–4), 346–365.CrossRefGoogle Scholar
  7. Bajestani, M. S., Mahboubi, A., Al-Aasm, I., Moussavi-Harami, R., & Nadjafi, M. (2016). Multistage dolomitization in the Qal’eh Dokhtar Formation (Middle-Upper Jurassic), Central Iran: petrographic and geochemical evidence: Dolomitization in the Qal’eh Dokhtar Fm. Geological Journal, 53, 22–44.  https://doi.org/10.1002/gj.2876.CrossRefGoogle Scholar
  8. Baldermann, A., Deditius, A. P., Dietzel, M., Fichtner, V., Fischer, C., Hippler, D., et al. (2015). The role of bacterial sulfate reduction during dolomite precipitation: Implications from Upper Jurassic platform carbonates. Chemical Geology, 412, 1–14.CrossRefGoogle Scholar
  9. Barale, L., Bertok, C., d’Atri, A., Domini, G., Martire, L., & Piana, F. (2013). Hydrothermal dolomitization of the carbonate Jurassic succession in the Provençal and Subbriançonnais Domains (Maritime Alps, North-Western Italy). Comptes Rendus Geoscience, 345(1), 47–53.  https://doi.org/10.1016/j.crte.2012.10.015.CrossRefGoogle Scholar
  10. Bathurst, R. G. C. (1966). Boring algae, micrite envelopes and lithification of molluscan biosparites. Geological Journal, 5(1), 15–32.CrossRefGoogle Scholar
  11. Becker, A. (2000). The Jura Mountains—an active foreland fold-and-thrust belt? Tectonophysics, 321(4), 381–406.CrossRefGoogle Scholar
  12. Beckert, J., Vandeginste, V., & John, C. M. (2015). Exploring the geological features and processes that control the shape and internal fabrics of late diagenetic dolomite bodies (Lower Khuff equivalent–Central Oman Mountains). Marine and Petroleum Geology, 68, 325–340.CrossRefGoogle Scholar
  13. Bernier, P. (1984). Les formations carbonatées du Kimméridgien et du Portlandien dans le Jura méridional: stratigraphie, micropaléontologie, sédimentologie. Ph.D. dissertation, Université de Lyon, Laboratoire de Géologie, Lyon, France.Google Scholar
  14. Bernier, P., & Enay, R. (1972). Figures d’émersion temporaire et indices de sédimentation à très faible profondeur dans le Portlandien et le Kimméridgien supérieur (Calcaires en plaquettes) du Grand-Colombier-de-Culoz (Ain, France). Bulletin de la Société Géologique de France, 7(1–5), 281–292.CrossRefGoogle Scholar
  15. Braithwaite, C. J. R. (1991). Dolomites, a review of origins, geometry and textures. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 82(2), 99–112.CrossRefGoogle Scholar
  16. Brigaud, B., Durlet, C., Deconinck, J.-F., Vincent, B., Pucéat, E., Thierry, J., et al. (2009a). Facies and climate/environmental changes recorded on a carbonate ramp: A sedimentological and geochemical approach on Middle Jurassic carbonates (Paris Basin, France). Sedimentary Geology, 222(3–4), 181–206.CrossRefGoogle Scholar
  17. Brigaud, B., Durlet, C., Deconinck, J.-F., Vincent, B., Thierry, J., & Trouiller, A. (2009b). The origin and timing of multiphase cementation in carbonates: Impact of regional scale geodynamic events on the Middle Jurassic Limestones diagenesis (Paris Basin, France). Sedimentary Geology, 222(3), 161–180.  https://doi.org/10.1016/j.sedgeo.2009.09.002.CrossRefGoogle Scholar
  18. Burkhard, M. (1993). Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: A review. Journal of Structural Geology, 15(3–5), 351–368.CrossRefGoogle Scholar
  19. Burkhard, M., & Sommaruga, A. (1998). Evolution of the western Swiss Molasse basin: Structural relations with the Alps and the Jura belt. Geological Society, London, Special Publications, 134(1), 279–298.CrossRefGoogle Scholar
  20. Carozzi, A. V. (1950). “Graded bedding” et rythmes de sédimentation dans le Séquanien supérieur du Grand-Salève (Haute-Savoie). Archives des Sciences Genève, 3, 439–442.Google Scholar
  21. Carozzi, A. V. (1954). Le Jurassique supérieur récifal du Grand-Salève, essai de comparaison avec les récifs coralliens actuels. Eclogae Geologicae Helvetiae, 47, 373–446.Google Scholar
  22. Carozzi, A. V. (1955). Sédimentation récifale rythmique dans le Jurassique supérieur du Grand-Salève (Haute-Savoie, France). Geologische Rundschau, 43(2), 433–446.CrossRefGoogle Scholar
  23. Cervato, C. (1990). Hydrothermal dolomitization of Jurassic-Cretaceous limestones in the southern Alps (Italy): Relation to tectonics and volcanism. Geology, 18(5), 458–461.  https://doi.org/10.1130/0091-7613(1990)018<0458:HDOJCL>2.3.CO;2.CrossRefGoogle Scholar
  24. Charollais, J., Davaud, E., & Jamet, M. (1996). Evolution du bord oriental de la plate-forme jurassienne entre le Jurassique supérieur et l’Oligocène: modèle basé sur trois forages pétroliers (Haute-Savoie). Géologie de la France, 1, 25–42.Google Scholar
  25. Charollais, J.-J., Weidmann, M., Berger, J.-P., Engesser, B., Hotellier, J.-F., Gorin, G. E., et al. (2007). La Molasse du bassin franco-genevois et son substratum. Archives des Sciences Genève, 60, 59–174.Google Scholar
  26. Charollais, J., Wernli, R., Mastrangelo, B., Metzger, J., Busnardo, R., Clavel, B., et al. (2013). Présentation d’une nouvelle carte géologique du Vuache et du Mont de Musieges (Haute-Savoie, France). Stratigraphie et tectonique. Archives des Sciences Genève, 66, 1–64.Google Scholar
  27. Choquette, P. W., & Hiatt, E. E. (2008). Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites. Sedimentology, 55(2), 423–460.CrossRefGoogle Scholar
  28. Clerc, N., Rusillon, E., Moscariello, A., Renard, P., Paolacci, S., & Meyer, M. (2015). Detailed structural and reservoir rock typing characterisation of the Greater Geneva Basin, Switzerland, for geothermal resource assessment. In World geothermal congress, Melbourne, Australia, 19–25 April.Google Scholar
  29. Davis, J. M., Roy, N. D., Mozley, P. S., & Hall, J. S. (2006). The effect of carbonate cementation on permeability heterogeneity in fluvial aquifers: An outcrop analog study. Sedimentary Geology, 184(3), 267–280.  https://doi.org/10.1016/j.sedgeo.2005.11.005.CrossRefGoogle Scholar
  30. de Dolomieu, D. (1791). Sur un genre de pierres calcaires très peu effervescentes avec les acides et phosphorescentes par la collision. Journal de Physique, 39, 3–10.Google Scholar
  31. Debelmas, J., & Michel, R. (1961). Silicifications par altération climatique dans les séries alpines. Travaux du Laboratoire de Géologie de la Faculté des Sciences de Grenoble, 37, 7–14.Google Scholar
  32. Deville, Q. (1988). Analyse sédimentologique et séquentielle des terrains les plus anciens du Salève: les traces d’un récif à la base (?) du Kimméridgien. Archives des sciences Genève, 40, 65–84.Google Scholar
  33. Deville, Q. (1990). Chronostratigraphie et lithostratigraphie synthétique du Jurassique supérieur et du Crétacé inférieur de la partie méridionale du Grand Saleve (Haute-Savoie, France). Archives des Sciences Genève, 43, 215–235.Google Scholar
  34. Dickson, J. A. D. (1966). Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research, 36(2), 491–505.Google Scholar
  35. Disler, C. (1914). Stratigraphie und Tektonik des Rotliegenden und der Trias beiderseits des Rheins zwinschen Rheinfelden und Augst, Ph.D. dissertation, Universität Basel, Basel, Switzerland.Google Scholar
  36. Dou, Q., Sun, Y., & Sullivan, C. (2011). Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas. Journal of Applied Geophysics, 74(1), 8–18.  https://doi.org/10.1016/j.jappgeo.2011.02.010.CrossRefGoogle Scholar
  37. Dunnington, H. V. (1967). Aspects of diagenesis and shape change in stylolitic limestone reservoirs (pp. 339–352). In: 7th World petroleum congress, Mexico City, Mexico, 2–9 April.Google Scholar
  38. Ehrenberg, S. N., & Nadeau, P. H. (2005). Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. AAPG bulletin, 89(4), 435–445.CrossRefGoogle Scholar
  39. Enay, R. (1965). Les formations coralliennes de Saint-Germain-de-Joux (Ain). Bulletin de la Société géologique de France, 7(1), 23–31.Google Scholar
  40. Enay, R. (1969). Le prétendu” Argovien” d’Entremont (Haute-Savoie). Découverte de la zone à Platynota (Kimméridgien inférieur) au Vuache (Jura méridional). Société de Physique et d’Histoire Naturelle de Genève, 4(1), 68–76.Google Scholar
  41. Favre, J. A., Risler, E., & Lossier, L. (1880). Description géologique du canton de Genève. A. Cherbuliez.Google Scholar
  42. Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong, R. H., & Onasch, C. M. (2004). Calcite twin morphology: A low-temperature deformation geothermometer. Journal of Structural Geology, 26(8), 1521–1529.  https://doi.org/10.1016/j.jsg.2003.11.028.CrossRefGoogle Scholar
  43. Fondeur, C., Gottis, M., Rouire, J., & Vatan, A. (1954). Quelques aspects de la dolomitisation au Jurassique en France. XIXème Congrès de Géologie International, Alger, 15, 471–491.Google Scholar
  44. Fookes, E. (1995). Development and eustatic control of an Upper Jurassic reef complex (Saint Germain-de-Joux, Eastern France). Facies, 33(1), 129.CrossRefGoogle Scholar
  45. Gabellone, T., & Whitaker, F. (2016). Secular variations in seawater chemistry controlling dolomitization in shallow reflux systems: Insights from reactive transport modelling. Sedimentology, 63(5), 1233–1259.  https://doi.org/10.1111/sed.12259.CrossRefGoogle Scholar
  46. Garven, G. (1995). Continental-scale groundwater flow and geologic processes. Annual Review of Earth and Planetary Sciences, 23(1), 89–117.  https://doi.org/10.1146/annurev.ea.23.050195.000513.CrossRefGoogle Scholar
  47. Gasparrini, M., Bechstädt, T., & Boni, M. (2006). Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Marine and Petroleum Geology, 23(5), 543–568.  https://doi.org/10.1016/j.marpetgeo.2006.05.003.CrossRefGoogle Scholar
  48. Gawthorpe, Robert L. (1987). Burial dolomitization and porosity development in a mixed carbonate-clastic sequence: An example from the Bowland Basin, northern England. Sedimentology, 34(4), 533–558.  https://doi.org/10.1111/j.1365-3091.1987.tb00785.x.CrossRefGoogle Scholar
  49. Giorgioni, M., Iannace, A., D’Amore, M., Dati, F., Galluccio, L., Guerriero, V., et al. (2016). Impact of early dolomitization on multi-scale petrophysical heterogeneities and fracture intensity of low-porosity platform carbonates (Albian-Cenomanian, southern Apennines, Italy). Marine and Petroleum Geology, 73, 462–478.CrossRefGoogle Scholar
  50. Goldberg, M. (1967). Supratidal dolomitization and dedolomitization in Jurassic rocks of Hamakhtesh Haqatan, Israel. Journal of Sedimentary Research, 37(3), 760–773.Google Scholar
  51. Gomez-Rivas, E., Corbella, M., Martín-Martín, J. D., Stafford, S. L., Teixell, A., Bons, P. D., et al. (2014). Reactivity of dolomitizing fluids and Mg source evaluation of fault-controlled dolomitization at the Benicàssim outcrop analogue (Maestrat basin, E Spain). Marine and Petroleum Geology, 55, 26–42.  https://doi.org/10.1016/j.marpetgeo.2013.12.015.CrossRefGoogle Scholar
  52. Gregg, J. M. (1983). On the formation and occurrence of saddle dolomite—discussion. Journal of Sedimentary Research, 53(3), 1025–1026.Google Scholar
  53. Gregg, J. M. (1985). Regional epigenetic dolomitization in the Bonneterre Dolomite (Cambrian), southeastern Missouri. Geology, 13(7), 503–506.  https://doi.org/10.1130/0091-7613(1985)13<503:REDITB>2.0.CO;2.CrossRefGoogle Scholar
  54. Gregg, J. M., & Sibley, D. F. (1984). Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Research, 54(3), 908–931.Google Scholar
  55. Guo, C., Chen, D., Qing, H., Dong, S., Li, G., Wang, D., et al. (2016). Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian–Lower Ordovician carbonates in the northern Tarim Basin, China. Marine and Petroleum Geology, 72, 295–316.  https://doi.org/10.1016/j.marpetgeo.2016.01.023.CrossRefGoogle Scholar
  56. Gygi, R. A. (2013). Integrated Stratigraphy of the Oxfordian and Kimmeridgian (Late Jurassic) in northern Switzerland and adjacent southern Germany. Memoir of the Swiss Academy of Science, 104, 150.Google Scholar
  57. Haas, J., Budai, T., Győri, O., & Kele, S. (2014). Multiphase partial and selective dolomitization of Carnian reef limestone (Transdanubian Range, Hungary). Sedimentology, 61(3), 836–859.CrossRefGoogle Scholar
  58. Heim, A. (1922). Le sondage pour la recherche du pétrole à Challex (Ain). Eclogae Geologicae Helvetiae, 17(1), 115–123.Google Scholar
  59. Heydari, E. (1997). Hydrotectonic models of burial diagenesis in platform carbonates based on formation water geochemistry in North American sedimentary basins. In I. P. Montanez, J. M. Gregg, & K. L. Shelton (Eds.), Basin-wide diagenetic patterns: Integrated petrologic, geochemical, and hydrologic considerations, SEPM Special publication. 57, 53–79.  https://doi.org/10.2110/pec.97.57.0053.CrossRefGoogle Scholar
  60. Holail, H. (1992). Coordinated petrography-isotopic-chemical investigation of meteoric calcite cement (Jurassic-Pleistocene). Egypt. Carbonates and Evaporites, 7(1), 48–55.  https://doi.org/10.1007/BF03175392.CrossRefGoogle Scholar
  61. Iannace, A., Frijia, G., Galluccio, L., & Parente, M. (2014). Facies and early dolomitization in Upper Albian shallow-water carbonates of the southern Apennines (Italy): Paleotectonic and paleoclimatic implications. Facies, 60(1), 169–194.  https://doi.org/10.1007/s10347-013-0362-4.CrossRefGoogle Scholar
  62. Illing, L. V. (1959). Deposition and Diagenesis of some upper palaeozoic carbonate sediments in Western Canada. In 5th World petroleum congress, New York, USA, 30 May.Google Scholar
  63. Jodry, R. L. (1969). Growth and dolomitization of Silurian reefs, St. Clair County, Michigan. AAPG Bulletin, 53(4), 957–981.Google Scholar
  64. Jones, G. D., Smart, P. L., Whitaker, F. F., Rostron, B. J., & Machel, H. G. (2003). Numerical modeling of reflux dolomitization in the Grosmont platform complex (Upper Devonian), Western Canada sedimentary basin. AAPG Bulletin, 87(8), 1273–1298.CrossRefGoogle Scholar
  65. Jones, G. D., Whitaker, F. F., Smart, P. L., & Sanford, W. E. (2002). Fate of reflux brines in carbonate platforms. Geology, 30(4), 371–374.  https://doi.org/10.1130/0091-7613(2002)030<0371:FORBIC>2.0.CO;2.CrossRefGoogle Scholar
  66. Jones, G. D., Whitaker, F. F., Smart, P. L., & Sanford, W. E. (2004). Numerical analysis of seawater circulation in carbonate platforms: II. The dynamic interaction between geothermal and brine reflux circulation. American Journal of Science, 304(3), 250–284.  https://doi.org/10.2475/ajs.304.3.250.CrossRefGoogle Scholar
  67. Joukowsky, E., & Favre, J. (1913). Monographie géologique et paléontologique du Salève (Haute Savoie). Mémoire de la Société de Physique et d’Histoire Naturelle de Genève, 37, 295–523.Google Scholar
  68. Kaufman, J. (1994). Numerical models of fluid flow in carbonate platforms: Implications for dolomitization. Journal of Sedimentary Research, 64(1), 128–139.Google Scholar
  69. Kohout, F. A., Henry, H. R., & Banks, J. E. (1977). Hydrogeology related to geothermal conditions of the Floridan Plateau. Florida Bureau of Geology Special Publication, 21, 1–34.Google Scholar
  70. Kyser, T. K., James, N. P., & Bone, Y. (2002). Shallow burial dolomitization and dedolomitization of cenozoic cool-water limestones, Southern Australia: Geochemistry and origin. Journal of Sedimentary Research, 72(1), 146–157.  https://doi.org/10.1306/060801720146.CrossRefGoogle Scholar
  71. Land, L. S. (1970). Phreatic versus vadose meteoric diagenesis of limestones: evidence from a fossil water table. Sedimentology, 14(3–4), 175–185.  https://doi.org/10.1111/j.1365-3091.1970.tb00191.x.CrossRefGoogle Scholar
  72. Land, L. S., & Moore, C. H. (1980). Lithification, micritization and syndepositional diagenesis of biolithites on the Jamaican island slope. Journal of Sedimentary Research, 50(2), 357–369.Google Scholar
  73. Laubscher, H. P. (1986). The eastern Jura: Relations between thin-skinned and basement tectonics, local and regional. Geologische Rundschau, 75(3), 535–553.  https://doi.org/10.1007/BF01820630.CrossRefGoogle Scholar
  74. Laubscher, H. P. (1992). Jura kinematics and the Molasse Bassin. Eclogae Geologicae Helvetiae, 85(3), 653–675.Google Scholar
  75. Liedmann, W. (1992). Diagnetische Entwicklung süddeutscher Malmkarbonate: unter Berücksichtigung lumineszenzpetrographischer, fluid inclusion und geochemischer Untersuchungsmethoden; Tabellen. Ph.D. dissertation, Universität Heidelberg, Heidelberg, Germany, 307p.Google Scholar
  76. Liedmann, W., & Koch, R. (1990). Diagenesis and fluid inclusions of Upper Jurassic sponge-algal reefs in SW Germany. Facies, 23(1), 241.  https://doi.org/10.1007/BF02536715.CrossRefGoogle Scholar
  77. Longman, M. W. (1980). Carbonate diagenetic textures from nearsurface diagenetic environments. AAPG Bulletin, 64(4), 461–487.Google Scholar
  78. Machel, H.-G. (1985). Cathodoluminescence in calcite and dolomite and its chemical interpretation. Geoscience Canada, 12(4), 139–147.Google Scholar
  79. Machel, H.-G. (1987). Saddle dolomite as a by-product of chemical compaction and thermochemical sulfate reduction. Geology, 15(10), 936–940.  https://doi.org/10.1130/0091-7613(1987)15<936:SDAABO>2.0.CO;2.CrossRefGoogle Scholar
  80. Machel, H. G. (2004). Concepts and models of dolomitization: A critical reappraisal. Geological Society, London, Special Publications, 235(1), 7–63.CrossRefGoogle Scholar
  81. Matthews, A., Erel, Y., Listovsky, N., Grosz, S., Ayalon, A., Avni, Y., et al. (2006). Topographic- and density-driven fluids as sources of iron mineralization and dolomitization adjacent to the Dead Sea Transform. Geochimica et Cosmochimica Acta, 70(18, Supplement), A400.  https://doi.org/10.1016/j.gca.2006.06.807.CrossRefGoogle Scholar
  82. Maurer, H. R., Burkhard, M., Deichmann, N., & Green, A. G. (1997). Active tectonism in the central Alps: contrasting stress regimes north and south of the Rhone Valley. Terra Nova, 9(2), 91–94.  https://doi.org/10.1111/j.1365-3121.1997.tb00010.x.CrossRefGoogle Scholar
  83. Meyer, M. (2000). Le Complexe récifal Kimméridgien—Tithonien du Jura méridional interne (France), évolution multifactorielle, stratigraphique et tectonique. Terre et Environment, 24, 1–179.Google Scholar
  84. Meyers, W. J. (1974). Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico. Journal of Sedimentary Petrology, 44(3), 837–861.Google Scholar
  85. Montañez, I. P., & Read, J. F. (1992). Eustatic control on early dolomitization of cyclic peritidal carbonates: Evidence from the Early Ordovician Upper Knox Group, Appalachians. GSA Bulletin, 104(7), 872–886.  https://doi.org/10.1130/0016-7606(1992)104<0872:ECOEDO>2.3.CO;2.CrossRefGoogle Scholar
  86. Moore, C. H., Chowdhury, A., & Chan, L. (1988). Upper Jurassic Smackover platform dolomitization northwestern Gulf of Mexico: A tale of two waters. Sedimentology and Geochemistry of Dolostones, 43, 753–778.Google Scholar
  87. Mosar, J. (1999). Present-day and future tectonic underplating in the western Swiss Alps: Reconciliation of basement/wrench-faulting and décollement folding of the Jura and Molasse basin in the Alpine foreland. Earth and Planetary Science Letters, 173(3), 143–155.  https://doi.org/10.1016/S0012-821X(99)00238-1.CrossRefGoogle Scholar
  88. Moscariello, A. (2016). Geothermal exploration in SW Switzerland. In European Geothermal Congress, Strasbourg, France, 19–24 April.Google Scholar
  89. Mouchet, P. O. J. (1998). Stratigraphy and mineralostratigraphy of the Kimmeridgian in the central Jura mountains of Switzerland and eastern France. Eclogae Geologicae Helvetiae, 91(1), 53–68.Google Scholar
  90. Mountjoy, E. W., & Marquez, X. M. (1997). Predicting reservoir properties in dolomites: Upper Devonian Leduc buildups, deep Alberta basin. AAPG Memoir, 69, 267–306.Google Scholar
  91. Murray, R. C. (1960). Origin of porosity in carbonate rocks. Journal of Sedimentary Research, 30(1), 59–84.Google Scholar
  92. Mutti, M., & Simo, J. A. (1994). Distribution, petrography and geochemistry of early dolomite in cyclic shelf facies, Yates Formation (Guadalupian), Capitan Reef Complex, USA. Dolomites A Volume in Honour of Dolomieu International Association of Sedimentologists Special Publications, 21, 91–107.  https://doi.org/10.1002/9781444304077.ch7.CrossRefGoogle Scholar
  93. Nader, F. H., Swennen, R., Ellam, R. M., & Immenhauser, A. (2007). Field geometry, petrography and geochemistry of a dolomitization front (Late Jurassic, central Lebanon). Sedimentology, 54(5), 1093–1120.CrossRefGoogle Scholar
  94. Oliver, J. (1986). Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena. Geology, 14(2), 99–102.  https://doi.org/10.1130/0091-7613(1986)14<99:FETFOB>2.0.CO;2.CrossRefGoogle Scholar
  95. Papaioanou, F. P., & Carotsieris, Z. (1993). Dolomitization patterns in Jurassic-Cretaceous dissolution-collapse breccias of Mainalon Mountain (Tripolis Unit, Central Peloponnesus-Greece). Carbonates and Evaporites, 8(1), 9–22.  https://doi.org/10.1007/BF03175159.CrossRefGoogle Scholar
  96. Pelletier, M. (1953). Observations stratigraphiques sur les formations coralligènes du Bugey (Ain). Comptes Rendus de l’Académie des Sciences, 237(23), 1540–1542.Google Scholar
  97. Philippe, Y. (1994). Transfer zone in the Southern Jura thrust belt (Eastern France): Geometry, development, and comparison with analogue modeling experiments. In A. Mascle (Ed.), Hydrocarbon and petroleum geology of France (pp. 327–346). Berlin: Springer.  https://doi.org/10.1007/978-3-642-78849-9_23.CrossRefGoogle Scholar
  98. Qing, H., Bosence, D. W., & Rose, E. P. (2001). Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology, 48(1), 153–163.CrossRefGoogle Scholar
  99. Radke, B. M., & Mathis, R. L. (1980). On the occurrence and formation of saddle dolomite. Journal of Sedimentary Petrology, 50, 1149–1168.Google Scholar
  100. Railsback, L. B., & Hood, E. C. (2001). A survey of multi-stage diagenesis and dolomitization of Jurassic limestones along a regional shelf-to-basin transect in the Ziz Valley, Central High Atlas Mountains, Morocco. Sedimentary Geology, 139(3), 285–317.  https://doi.org/10.1016/S0037-0738(00)00164-0.CrossRefGoogle Scholar
  101. Rameil, N. (2008). Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: a case study from the Jura Mountains (NW Switzerland, E France). Sedimentary Geology, 212(1–4), 70–85.CrossRefGoogle Scholar
  102. Reinhold, C. (1998). Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, 121(1–2), 71–95.CrossRefGoogle Scholar
  103. Rong, H., Jiao, Y., Wu, L., Gu, Y., Zhang, L., Li, R., et al. (2012). Effects of diagenesis on the acoustic velocity of the Triassic oolitic shoals in the Yudongzi outcrop of Erlangmiao area, Northwest Sichuan Basin. Journal of Earth Science, 23(4), 542–558.  https://doi.org/10.1007/s12583-012-0274-1.CrossRefGoogle Scholar
  104. Rusillon, E., Clerc, N., Brentini, M., & Moscariello, A. (2016). Rock typing, structural characterization and stratigraphy harmonization in support of geothermal exploration in the Greater Geneva Basin (Switzerland) (pp. 19–24). In European geothermal congress, Strasbourg, France, 19–24 April.Google Scholar
  105. Rustichelli, A., Iannace, A., Tondi, E., Di Celma, C., Cilona, A., Giorgioni, M., et al. (2017). Fault-controlled dolomite bodies as palaeotectonic indicators and geofluid reservoirs: New insights from Gargano Promontory outcrops. Sedimentology, 64(7), 1871–1900.  https://doi.org/10.1111/sed.12378.CrossRefGoogle Scholar
  106. Schlanger, S. O. (1963). Subsurface geology of Eniwetok atoll. Geological Survery professional paper, 260(BB), 991–1066.Google Scholar
  107. Schmoker, J. W., Krystinik, K. B., & Halley, R. B. (1985). Selected characteristics of limestone and dolomite reservoirs in the United States. AAPG Bulletin, 69(5), 733–741.Google Scholar
  108. Schroeder, J.-W. (1958). Géologie du pays de Genève. Le Globe. Revue genevoise de géographie, 97, 49–87.CrossRefGoogle Scholar
  109. Sibley, D. F. (1980). Climatic control of dolomitization, Seroe Domi Formation (Pliocene), Bonaire, N. A. Special Publication of SEPM, 28, 247–258.Google Scholar
  110. Simms, M. (1984). Dolomitization by groundwater-flow system in carbonate platforms. Gulf Coast Association of Geological Societies Transactions, 34, 411–420.Google Scholar
  111. Sommaruga, A. (1997). Geology of the central Jura and the Molasse Basin: New insight into an evaporite-based foreland fold and thrust belt. Mémoire de la Société Neuchâteloise des Sciences Naturelles, 12, 176. (isbn: 2-88347-001-4).Google Scholar
  112. Strasser A. (1994). Milankovitch cyclicity and high‐resolution sequence stratigraphy in lagoonal–peritidal carbonates (Upper Tithonian–Lower Berriasian, French Jura Mountains). In Orbital Forcing and Cyclic Sequences P.L. de Boer, D.G. Smith. Special Publication International Association of Sedimentologists (pp. 285–301).CrossRefGoogle Scholar
  113. Strasser, A., Pittet, B., & Hug, W. (2015). Palaeogeography of a shallow carbonate platform: The case of the Middle to Late Oxfordian in the Swiss Jura Mountains. Journal of Palaeogeography, 4(3), 251–268.  https://doi.org/10.1016/j.jop.2015.08.005.CrossRefGoogle Scholar
  114. Sun, S. Q. (1994). A reappraisal of dolomite abundance and occurrence in the Phanerozoic. Journal of Sedimentary Research, 64(2a), 396–404.CrossRefGoogle Scholar
  115. Tóth, J. (1988). Ground water and hydrocarbon migration. Hydrogeology The Geological Society of North America, Boulder Colorado, O(2), 251–268.Google Scholar
  116. Tucker, M. E., & Wright, V. P. (1990). Carbonate Sedimentology (p. 482). Oxford: Blackwell.CrossRefGoogle Scholar
  117. Vincent, B. (2001). Sédimentologie et géochimie de la diagenèse des carbonates: application au Malm de la Bordure Est du Bassin de Paris. Ph.D. dissertation, Université de Bourgogne, Dijon, France.Google Scholar
  118. Vincent, B., Emmanuel, L., Houel, P., & Loreau, J.-P. (2007). Geodynamic control on carbonate diagenesis: Petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France). Sedimentary Geology, 197(3), 267–289.  https://doi.org/10.1016/j.sedgeo.2006.10.008.CrossRefGoogle Scholar
  119. Walls, R. A., & Burrowes, G. (1985). The Role of cementation in the diagenetic history of Devonian reefs. Western Canada. Special Publications of SEPM, 36, 185–220.Google Scholar
  120. Wang, G., Li, P., Hao, F., Zou, H., & Yu, X. (2015). Dolomitization process and its implications for porosity development in dolostones: A case study from the Lower Triassic Feixianguan Formation, Jiannan area, Eastern Sichuan Basin, China. Journal of Petroleum Science and Engineering, 131, 184–199.  https://doi.org/10.1016/j.petrol.2015.04.011.CrossRefGoogle Scholar
  121. Warren, J. (2000). Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 52(1–3), 1–81.CrossRefGoogle Scholar
  122. Westphal, H., Eberli, G. P., Smith, L. B., Grammer, G. M., & Kislak, J. (2004). Reservoir characterization of the Mississippian Madison Formation, Wind River basin, Wyoming. AAPG Bulletin, 88(4), 405–432.  https://doi.org/10.1306/12020301029.CrossRefGoogle Scholar
  123. Weyl, P. K. (1960). Porosity through dolomitization: conservation-of-mass requirements. Journal of Sedimentary Petrology, 30(1), 85–90.Google Scholar
  124. Wierzbicki, R., Dravis, J. J., Al-Aasm, I., & Harland, N. (2006). Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia. Canada. AAPG Bulletin, 90(11), 1843–1861.  https://doi.org/10.1306/03200605074.CrossRefGoogle Scholar
  125. Wilson, M. E. J., & Evans, M. J. (2002). Sedimentology and diagenesis of Tertiary carbonates on the Mangkalihat Peninsula, Borneo: Implications for subsurface reservoir quality. Marine and Petroleum Geology, 19(7), 873–900.  https://doi.org/10.1016/S0264-8172(02)00085-5.CrossRefGoogle Scholar
  126. Wilson, E. N., Hardie, L. A., & Phillips, O. M. (1990). Dolomitization front geometry, fluid flow patterns, and the origin of massive dolomite: The Triassic Latemar buildup, northern Italy. American Journal of Science, 290(7), 741–796.CrossRefGoogle Scholar
  127. Yao, Q., & Demicco, R. V. (1995). Paleoflow patterns of dolomitizing fluids and paleohydrogeology of the southern Canadian Rocky Mountains: Evidence from dolomite geometry and numerical modeling. Geology, 23(9), 791–794.  https://doi.org/10.1130/0091-7613(1995)023<0791:PPODFA>2.3.CO;2.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Service Industriels de Genève (SIG)GenevaSwitzerland

Personalised recommendations