Swiss Journal of Geosciences

, Volume 111, Issue 3, pp 523–536 | Cite as

Biostratigraphy of large benthic foraminifera from Hole U1468A (Maldives): a CT-scan taxonomic approach

  • Giovanni ColettiEmail author
  • Stephanie Stainbank
  • Alessio Fabbrini
  • Silvia Spezzaferri
  • Anneleen Foubert
  • Dick Kroon
  • Christian Betzler


Large benthic foraminifera are important components of tropical shallow water carbonates. Their structure, developed to host algal symbionts, can be extremely elaborate and presents stratigraphically-significant evolutionary patterns. Therefore their distribution is important in biostratigraphy, especially in the Indo-Pacific area. To provide a reliable age model for two intervals of IODP Hole U1468A from the Maldives Inner-Sea, large benthic foraminifera have been studied with computed tomography. This technique provided 3D models ideal for biometric-based identifications, allowing the upper interval to be placed in the late middle-Miocene and the lower interval in the late Oligocene.


Microtomography Nephrolepidina Cycloclypeus Heterostegina Amphistegina Nummulitids 



We are grateful to the IODP for providing the samples used in this study. Christoph Neururer (Fribourg) is acknowledged for assistance during the CT scanning. Warm thanks to A. Collareta, W. Renema and J. Hohenegger for their useful suggestions. This study was supported by the Swiss National Science Foundation (200021_165852/1).

Supplementary material

15_2018_306_MOESM1_ESM.pdf (43 kb)
Supplementary material 1 (PDF 43 kb)
15_2018_306_MOESM2_ESM.pdf (34 kb)
Supplementary material 2 (PDF 34 kb)
15_2018_306_MOESM3_ESM.pdf (41 kb)
Supplementary material 3 (PDF 41 kb)
15_2018_306_MOESM4_ESM.pdf (64 kb)
Supplementary material 4 (PDF 64 kb)


  1. Adams, C. G. (1970). A reconsideration of the East Indian letter classification of the Tertiary. Bulletin of the British Museum (Natural History). Geology, 19(3), 85–137.Google Scholar
  2. Aubert, O., & Droxler, A. W. (1996). Seismic stratigraphy and depositional signatures of the Maldive carbonate system (Indian Ocean). Marine and Petroleum Geology, 13(5), 503–536.CrossRefGoogle Scholar
  3. Banner, T. F., & Hodgkinson, L. R. (1991). A revision of the foraminiferal subfamily Heterostegininae. Revista Espanola de Micropaleontologia, 13, 101–140.Google Scholar
  4. Beavington-Penney, S. J., & Racey, A. (2004). Ecology of extant nummulitids and other large benthic foraminifera in paleoenvironmental analysis. Earth-Science Reviews, 67, 219–265.CrossRefGoogle Scholar
  5. Benedetti, A., & Briguglio, A. (2012). Risananeiza crassaparies n. sp. from the Late Chattian of Porto Badisco (southern Apulia). Bollettino della Società Paleontologica Italiana, 51, 167–176.Google Scholar
  6. Benedetti, A., Less, G., Parente, M., Pignatti, J., Cahuzac, B., Torres-Silva, A. I., et al. (2017). Heterostegina matteuccii sp. nov. (Foraminiferida: Nummulitidae) from the lower Oligocene of Sicily and Aquitaine: A possible transatlantic immigrant. Journal of Systematic Palaeontology, 16, 87–110.CrossRefGoogle Scholar
  7. Betzler, C., & Chaproniere, G.C.H. (1993). Paleogene and Neogene Larger Benthic foraminifera from the Queensland Plateau: biostratigraphy and environmental significance. Proceedings of the Ocean Drilling Program, Scientific Results. 133, 51-66Google Scholar
  8. Betzler, C., Lüdmann, T., Hübscher, C., & Fürstenau, J. (2013). Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean). Sedimentary Geology, 290, 126–137.CrossRefGoogle Scholar
  9. Betzler, C., Eberli, G.P., Alvarez Zarikian, C.A., Alonso-García, M., Bialik, O.M., Blättler, C.L., Guo, J.A., Haffen, S., Horozal, S., Inoue, M., Jovane, L., Kroon, D., Lanci, L., Laya, J.C., Ling Hui Mee, A., Lüdmann, T., Nakakuni, M., Nath, B.N., Niino, K., Petruny, L.M., Pratiwi, S.D., Reijmer, J., Reolid, J., Slagle, A.L., Sloss, C.R., Su, X., Swart, P.K., Wright, J.D., Yao, Z., Young, J.R. (2017). Site U1468. In Betzler, C., Eberli, G.P., Alvarez Zarikian, C.A., and the Expedition 359 Scientists, Maldives Monsoon and Sea Level. Proceedings of the International Ocean Discovery Program, 359 (pp. 1-40). College Station, TX (International Ocean Discovery Program).Google Scholar
  10. Boudagher-Fadel, M. K. (2002). The stratigraphic relationship between planktonic and larger benthic foraminifera in Middle Miocene to Lower Pliocene carbonates facies Sulawesi, Indonesia. Micropalaentology, 48, 153–176.CrossRefGoogle Scholar
  11. Boudagher-Fadel, M. K. (2008). Evolution and geological significance of Larger Benthic Foraminifera. Elsevier Science, 21, 544.Google Scholar
  12. Boudagher-Fadel, M. K., & Banner, F. T. (1999). Revision of the stratigraphic significance of the Oligocene-Miocene “Letter Stages”. Revue de Micropaléontogie, 42(2), 93–97.CrossRefGoogle Scholar
  13. Boudagher-Fadel, M. K., & Lokier, S. W. (2005). Significant Miocene larger foraminifera from South Central Java. Revue de Paleobiologie, 24, 291–309.Google Scholar
  14. Boudagher-Fadel, M. K., & Lord, A. R. (2000). The evolution of Lepidocyclina (L.) isolepinoides, L. (Nephrolepidina) nephrolepidinoides sp. NOV., L. (N.) brouweri and L. (N.) ferreroi in the Late Oligocene-Miocene of the far East. Journal of Foraminiferal Research, 30(1), 71–76.CrossRefGoogle Scholar
  15. Briguglio, A., & Hohenegger, J. (2014). Growth oscillation in larger benthic foraminifera. Paleobiology, 40, 494–509.CrossRefGoogle Scholar
  16. Briguglio, A., Hohenegger, J., & Less, G. (2013). Paleobiological applications of three-dimensional biometry on larger benthic foraminifera: A new route of discoveries. Journal of Foraminiferal Research, 43, 67–82.CrossRefGoogle Scholar
  17. Briguglio, A., Wöger, J., Wolfgring, E., & Hohenegger, J. (2014). Changing investigation perspectives: methods and applications of computed tomography on larger benthic foraminifera. In H. Kitazato & J. Bernhard (Eds.), Experimental Approaches in Foraminifera: Collection, Maintenance and Experiments (pp. 55–70). Japan: Springer Environmental Science Series.CrossRefGoogle Scholar
  18. Briguglio, A., Kinoshita, S., Wolfgring, E., & Hohenegger, J. (2016). Morphological variations in Cycloclipeus carpenteri: Multiple embyos and multiple equatorial layers. Palaeontologia Electronica. Scholar
  19. Chaproniere, G. C. H. (1980). Biometrical studies of early Neogene larger Foraminiferida from Australia and New Zealand. Alcheringa, 4, 153–181.CrossRefGoogle Scholar
  20. Chaproniere, G. C. H. (1984). The Neogene larger foraminiferal sequence in the Australian and New Zealand regions, and its relevance to the East Indies letter stage classification. Palaeogeography Palaeoclimatology Palaeoecology, 46, 25–35.CrossRefGoogle Scholar
  21. Cotton, L. J., Pearson, P. N., & Renema, W. (2015). A new Eocene lineage of reticulate Nummulites (Foraminifera) from Kilwa district, Tanzania; A place for Nummulites ptukhiani? Journal of Systematic Palaeontology, 14, 569–579.CrossRefGoogle Scholar
  22. Droxler, A.W., Haddad, G.A., Mucciarone, D.A., Cullen, J.L. (1990). Pliocene–Pleistocene aragonite cyclic variations in Holes 714A and 716B (The Maldives) compared with Hole 633A (The Bahamas): records of climate-induced CaCO3 preservation at intermediate water depths. In Duncan, R.A., Backman, J., Peterson, L.C., et al., (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 115, (pp. 539–577). College Station, TX (Ocean Drilling Program).Google Scholar
  23. Hallock, P. (1981). Production of carbonate sediments by selected large benthic foraminifera on two Pacific coral reefs. Journal of Sedimentary Petrology, 51, 467–474.Google Scholar
  24. Hallock, P., Sheps, K., Chaproniere, G., Howell, M. (2006). Larger benthic foraminifera of the Marion Plateau, Northeastern Australia (ODP Leg 194): Comparison of faunas from bryozoans (Sites 1193 and 1194) and red algal (Sites 1196-1198) dominated carbonate platforms. In Anselmetti FS, Blum P and Betzler C (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 194, (pp. 1–31). College Station, TX (Ocean Drilling Program).Google Scholar
  25. Haynes, J. R. (1965). Symbiosis, wall structure and habitat in foraminifera. Contributions from the Cushman Foundation for Foraminiferal Research, 16, 40–43.Google Scholar
  26. Hohenegger, J. (1994). Distribution of living larger Foraminifera NW of Sesoko-Jima, Okinawa, Japan. Marine Ecology, 15, 291–334.CrossRefGoogle Scholar
  27. Hohenegger, J. (2000). Coenoclines of larger foraminifera. Micropaleontology, 46, 127–151.Google Scholar
  28. Hohenegger, J. (2011). Growth-invariant meristic characters tools to reveal phylogenetic relationships in Nummulitidae (Foraminifera). Turkish Journal of Earth Sciences, 20, 655–681.Google Scholar
  29. Hohenegger, J., & Briguglio, A. (2014). Methods for estimating growth pattern and lifetime of foraminifera based on chamber volumes. In H. Kitazato & J. Bernhard (Eds.), Experimental Approaches in Foraminifera: Collection, maintenance and experiments (pp. 29–54). Japan: Springer.CrossRefGoogle Scholar
  30. Hohenegger, J., Yordanova, E., & Hatta, A. (2000). Remarks on West Pacific Nummulitidae (Foraminifera). Journal of Foraminiferal Research, 30, 3–28.CrossRefGoogle Scholar
  31. Hottinger, L. (1977). Foraminifères operculiniformes. Mémoires du muséum National d’Histoire Naturelle, Paris, Nouvelle Série, Série C, 40, 1–159.Google Scholar
  32. Hottinger, L. (1983). Reconstruction of marine paleoenvironments. In Meulenkamp J. E. (Ed.), Processes determining the distribution of foraminifera in space and time. Utrecht Micropaleontological Bulletin, 30, 239–253.Google Scholar
  33. Langer, M. R., & Hottinger, L. (2000). Biogeography of selected “larger” foraminifera. Micropaleontology, 46, 105–126.Google Scholar
  34. Lee, J. J., & Hallock, P. (1987). Algal symbiosis as a driving force in the evolution of larger Foraminifera. Annals of the New York Academy of Sciences, 503, 330–347.CrossRefGoogle Scholar
  35. Less, G., Özcan, E., Papazzoni, C. A., & Stockar, R. (2008). The middle to late Eocene evolution of nummulitid foraminifer Heterostegina in the Western Tethys. Acta Palaeontologica Polonica, 53, 317–350.CrossRefGoogle Scholar
  36. Loeblich, A. J. R., & Tappan, H. (1964). Sarcodina chiefly “The camoebians“ and Foraminiferida. In R. C. Moore (Ed.), Treatise on Invertebrate Paleontology, part C, 1–2 (pp. 1–900). Lawrence: Geological Society of America and University of Kansas Press.Google Scholar
  37. Lunt, P., & Renema, W. (2014). On the Heterostegina-Tansinhokella-Spiroclypeus lineage(s) in SE Asia. Berita Sedimentologi Indonesian Journal of Sedimentary Geology, 30, 6–31.Google Scholar
  38. Matteucci, R., & Schiavinotto, F. (1977). Studio biometrico di Nephrolepidina, Eulepidina e Cycloclypeus in due campioni dell’Oligocene di Monte La Rocca, L’Aquila (Italia centrale). Geologica Romana, 16, 141–171.Google Scholar
  39. Matteucci, R., & Schiavinotto, F. (1980). Ricerche biometriche su Operculina GR. Alpina Douvillé. Geologica Romana, 19, 251–265.Google Scholar
  40. O’Herne, L. (1972). Secondary chamberlets in Cycloclypeus. Scripta Geologica, 7, 1–35.Google Scholar
  41. Özcan, E., Less, G., Báldi-Beke, M., Kollányi, K., & Acar, F. (2009). Oligo-Miocene foraminiferal record (Miogypsinidae, Lepidocyclinidae and Nummulitidae) from the Western Taurides (SW Turkey): Biometry and implications for the regional geology. Journal of Asian Earth Sciences, 34, 740–760.CrossRefGoogle Scholar
  42. Pignatti, J., Samso, J. M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., et al. (1998). Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin Societé Géologie de France, 169, 281–299.Google Scholar
  43. Renema, W. (2006). Large benthic foraminifera from the deep photic zone of a mixed siliciclastic-carbonate shel off East Kalimantan, Indonesia. Marine Micropaleontology, 58, 73–82.CrossRefGoogle Scholar
  44. Renema, W. (2007). Fauna Development of Larger Benthic Foraminifera in the Cenozoic of Southeast Asia. In W. Renema (Ed.), Biogeography, time and place: distributions, barriers and islands (pp. 179–215). Dordrecht: Springer.CrossRefGoogle Scholar
  45. Renema, W. (2015). Spatiotemporal variation in morphological evolution in the Oligocene-recent larger benthic foraminifera genus Cycloclypeus reveals geographically undersampled speciation. GeoResJ, 5, 12–22.CrossRefGoogle Scholar
  46. Renema, W. (2018). Terrestrial influence as a key driver of spatial variability in large benthic foraminiferal assemblage composition in the Central Indo-Pacific. Earth Sciences Review, 177, 514–544.CrossRefGoogle Scholar
  47. Renema, W., & Cotton, L. (2015). Three dimensional reconstructions of Nummulites tests reveal complex chamber shapes. PeerJ, 3, e1072. Scholar
  48. Renema, W., Hoeksema, B. W., & van Hinte, J. E. (2001). Larger benthic foraminifera and their distribution patterns on the Spermonde shelf, South Sulawesi. Zoologische Verhandelingen, Leiden, 334, 115–149.Google Scholar
  49. Schaub, H. (1981). Nummulites et Assilines de la Thethys paléogène. Taxonomie, phylogénèse, biostratigraphie. Mémoires Suisses de Paléontologie, 104–106, 1–236.Google Scholar
  50. Schiavinotto, F. (1978). Nephrolepidina nella Valle del Maso (Borgo Valsugana-Italia settentrionale). Rivista Italiana di Paleontologia e Stratigrafia, 84, 729–750.Google Scholar
  51. Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Fernandez, C., Jauhri, A. K., et al. (1998). Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société Géologique de France, 169, 281–299.Google Scholar
  52. Sharaf, E. M., Boudagher-Fadel, M. K., Simo, J. A., & Carroll, A. R. (2005). Biostratigraphy and strontium isotope dating of Oligocene-Miocene strata, East Java, Indonesia. Stratigraphy, 2(3), 239–258.Google Scholar
  53. Tan, S. H. (1932). On the genus Cycloclypeus Carpenter. Part I, and an appendix on the Heterostegines of Tjimanggoe, S. Bantam, Java. Wetenschappelijke Mededeelingen Dienst van den Mijnbouw in Nederlandsch-Indië, 19, 3–194.Google Scholar
  54. Torres-Silva, A. I., Hohenegger, J., Ćoriċ, S., & Briguglio, A. (2017). Biostratigraphy and evolutionary tendencies of Eocene heterostegines in Western and Central Cuba based on morphometric analyses. Palaios, 32, 44–60.CrossRefGoogle Scholar
  55. Tudhope, A.W. & Scoffin, T.P. (1988). The relative importance of benthic foraminifera in the production of carbonate sediment on the Central Queensland shelf. Proceedings of the 6th International Coral Reef Symposium, Australia, 2, 583–588.Google Scholar
  56. Van der Vlerk, I. M. (1959). Modifications de l’ontogénèse pendant l’évolution des Lépidocyclines (Foraminifères). Bulletin de la Société Géologique de France Notes et Mémoires Série, 7(1), 669–673.Google Scholar
  57. Van der Vlerk, I. M. (1963). Biometric research on Lepidocyclina. Micropaleontology, 9, 425–426.CrossRefGoogle Scholar
  58. Van der Vlerk, I. M., & Umbgrove, J. H. L. (1927). Tertiaire gidsforaminiferen uit Nederlandsch Oost-Indie. Wetenschappelijke Mededeelingen, Dienst Mijnbouw Bandoeng, 6, 1–31.Google Scholar
  59. Van Vessem, E. J. (1978). Study of Lepidocyclinidae from South-East Asia, particularly from Java and Borneo. Utrecht Micropalaeontological Bullettin, 19, 1–163.Google Scholar
  60. Wade, B. S., Pearson, P. N., Berggren, W. A., & Pälike, H. (2011). Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Science Reviews, 104, 111–142.CrossRefGoogle Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of FribourgFribourgSwitzerland
  2. 2.Department of Physical Sciences, Earth and EnvironmentUniversity of SienaSienaItaly
  3. 3.School of GeoSciencesUniversity of Edinburgh, Grant InstituteEdinburghUK
  4. 4.Institute of Geology, CENUniversity of HamburgHamburgGermany

Personalised recommendations