Advertisement

Swiss Journal of Geosciences

, Volume 111, Issue 3, pp 399–416 | Cite as

Evaluating igneous sources of the Taveyannaz formation in the Central Alps by detrital zircon U–Pb age dating and geochemistry

  • Gang Lu
  • Wilfried Winkler
  • Meinert Rahn
  • Albrecht von Quadt
  • Sean D. Willett
Article

Abstract

Late Palaeogene syn-tectonic volcanic products have been found in the Northern Alpine foreland basin and in the South Alpine hemipelagic basin. The source of abundant volcanic fragments is still in debate. We analyzed the geochronology and geochemistry of detrital zircons, and evaluated their temporal and genetic relationships with potential volcanic sources. The study shows that the detrital zircon U–Pb age patterns have two major age groups: a dominance (ca. 90%) of pre-Alpine zircons was found, as commonly observed in other Alpine flysch formations. These zircons apparently derived from erosion of the early Alpine nappe stack in South Alpine and Austroalpine units. Furthermore, a few Neo-Alpine zircons (ca. 10%) have ages ranging from Late Eocene to Early Oligocene (~ 41–29 Ma). Both source materials were mixed during long riverine transport to the basin margins before being re-deposited by gravity flows. These Palaeogene ages match with the activity of Peri-Adriatic magmatism, including the Biella volcanic suite as well as the Northern Adamello and Bergell intrusions. The values of REE and 176Hf/177Hf(t) ratios of the Alpine detrital zircons are in line with the magmatic signatures. We observe an in time and space variable supply of syn-sedimentary zircons. From late Middle Eocene to Late Eocene, basin influx into the South Alpine and Glarus (A) basins from the Northern Adamello source is documented. At about 34 Ma, a complete reorganisation is recorded by (1) input of Bergell sources into the later Glarus (B) basin, and (2) the coeval volcaniclastic supply of the Haute-Savoie basin from the Biella magmatic system. The Adamello source vanished in the foreland basin. The marked modification of the basin sources at ~ 34 Ma is interpreted to be initiated by a northwestern shift of the early Alpine drainage divide into the position of the modern Insubric Line.

Keywords

North Alpine foreland basin Flysch LA-ICP-MS Zircon Hf isotope Palaeogeography 

Notes

Acknowledgements

We thank G. Fellin, V. Picotti, P. Brack, A. Beltrán-Triviño, D. Letsch, A. Mohammadi for continuous advice in the lab and for numerous discussions, M. Guillong for the great support while acquiring the U/Pb and the Hf data, and A. Di Capua for the continued help during field work and sample analysis. The journal reviewers A. El Korh and J. Hermann are thanked for their numerous constructive comments and suggestions. The support by a Chinese Scholarship (CSC) and ETH internal funding is much appreciated.

Supplementary material

15_2018_302_MOESM1_ESM.xlsx (7.7 mb)
Supplementary material 1 (XLSX 7852 kb)

References

  1. Allen, P. A., Crampton, S. L., & Sinclair, H. D. (1991). The inception and early evolution of the North Alpine Foreland Basin, Switzerland. Basin Research, 3, 143–163.CrossRefGoogle Scholar
  2. Bars, H., & Grigoriades, J. (1969). Über Basalttuffite der oberen Mittel-Eozäns der Scaglia Grigia im Val di Non (Nonsberg), Provinz Trient, Italien. Neues Jahrbuch Geologie Paläontologie, Monatsheft, 1969, 643–645.Google Scholar
  3. Belousova, E., Griffin, W. L., O’Reilly, S. Y., & Fisher, N. L. (2002). Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602–622.CrossRefGoogle Scholar
  4. Beltrando, M., Lister, G. S., Rosenbaum, G., Richards, S., & Forster, M. A. (2010). Recognizing episodic lithospheric thinning along a convergent plate margin: The example of the Early Oligocene Alps. Earth-Science Reviews, 103, 81–98.CrossRefGoogle Scholar
  5. Beltrán-Triviño, A., Winkler, W., von Quadt, A., & Gallhofer, D. (2016). Triassic magmatism on the transition from Variscan to Alpine cycles: evidence from U-Pb, Hf, and geochemistry of detrital minerals. Swiss Journal of Geosciences, 109, 309–328.CrossRefGoogle Scholar
  6. Beltràn-Triviño, A., Winkler, W., & von Quadt, A. (2013). Tracing Alpine sediment sources through laser-ablation U-Pb dating and Hf-isotopes of detrital zircons. Sedimentology, 60, 197–224.CrossRefGoogle Scholar
  7. Berger, A., Mercolli, I., Kapferer, N., & Fügenschuh, B. (2012). Single and double exhumation of fault blocks in the internal Sesia-Lanzo Zone and the Ivrea-Verbano Zone (Biella, Italy). International Journal of Earth Sciences, 101, 1877–1894.CrossRefGoogle Scholar
  8. Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48–57.CrossRefGoogle Scholar
  9. Boyet, M., Lapierre, H., Tardy, M., Bosch, D., & Maury, R. (2001). Nature des sources des composantes andésitiques des Grés du Chaupsaur et des Grés de Taveyannaz. Implications dans l’evolution des Alpes occidentales au Paléogène. Bulletin Société géologique de France, 172, 487–501.CrossRefGoogle Scholar
  10. Broderick, C., Wotzlaw, J. F., Frick, D. A., Gerdes, A., Ulianov, A., Günther, D., et al. (2015). Linking the thermal evolution and emplacement history of an upper-crustal pluton to its lower-crustal roots using zircon geochronology and geochemistry (southern Adamello batholith, N. Italy). Contributions to Mineralogy and Petrology, 170, 28.CrossRefGoogle Scholar
  11. Bütler, E., Winkler, W., & Guillong, M. (2011). Laser ablation U/Pb age patterns of detrital zircons in the Late Maatrichtian—Early Eocene Schlieren flysch (Central Switzerland): New proves on the detrital sources. Swiss Journal of Geoscience, 104, 225–236.CrossRefGoogle Scholar
  12. Callegari, E., & Brack, P. (2002). Geological map of the Tertiary Adamello batholith (northern Italy): Explanatory notes and legend. Tipografica: Società Coop.Google Scholar
  13. Callegari, E., Cigolini, C., Medeot, O., & D’Antonio, M. (2004). Petrogenesis of calc-alkaline and shoshonitic post-collisional Oligocene volcanics of the Cover Series of the Sesia Zone, Western Italian Alps. Geodinamica Acta, 17, 1–29.CrossRefGoogle Scholar
  14. Castellarin, A., Dal Piaz, G. V., Picotti, V., Selli, L., Cantelli, L., Martin, S., et al. (2005). Carta Geologica d’Italia, 1:50 000, 059 Tione di Trento, mit Erläuterungen. Rom: APAT.Google Scholar
  15. Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., et al. (2002). Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17, 1567–1574.CrossRefGoogle Scholar
  16. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123.CrossRefGoogle Scholar
  17. Di Capua, A., & Groppelli, G. (2015). Application of actualistic models to unravel primary volcanic control on sedimentation (Taveyanne Sandstones, Oligocene Northalpine Foreland Basin). Sedimentary Geology, 336, 147–160.CrossRefGoogle Scholar
  18. Doglioni, C., & Bosellini, A. (1987). Eoalpine and mesoalpine tectonics in the Southern Alps. Geologische Rundschau, 76, 735–754.CrossRefGoogle Scholar
  19. Féraud, G., Ruffet, G., Stéphan, J. F., Lapierre, H., Delgado, E., & Popoff, M. (1995). Nouvelles données géochronologiques sur le volcanisme paléogène des Alpes occidentales: existence d’un événement magmatique bref généralisé. Séance Spéciale de la Société géologique de France et de l” Association des Géologues du SE” Magmatismes dans le sud-est de la France”, Nice (pp. 25–26).Google Scholar
  20. Ferrero Mählmann, R. (1995). Das Diagenese-Metamorphose-Muster von Vitrinitreflexion und Illit-„Kristallinität“in Mittelbünden und im Oberhalbstein. Teil 1: Bezüge zur Stockwerktektonik. Schweizerische Mineralogische Petrographische Mitteilungen, 75, 85–122.Google Scholar
  21. Fischer, H., & Villa, I. M. (1990). Erste Ar/Ar und Ar/Ar-Hornblende-Mineralalter des Taveyannaz-Sndsteins. Schweiz Mineral Petrograph Mitteilungen, 70, 73–75.Google Scholar
  22. Fisher, C. M., Vervoort, J. D., & Hanchar, J. M. (2014). Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chemical Geology, 363, 125–133.CrossRefGoogle Scholar
  23. Fontignie, D., Delaloye, M., & Bertrand, J. (1982). Ages radiometriques K/Ar des elements ophiolitiques de la nappe des Gets (Haute-Savoie, France). Eclogae geologicae Helvetiae, 75, 117–126.Google Scholar
  24. Ford, M., & Lickorish, W. H. (2004). Foreland basin evolution around the western Alpine Arc (pp. 39–63). London: Geological Society.Google Scholar
  25. Frisch, W., Neubauer, F., & Satir, M. (1984). Concepts of the evolution of the Austroalpine basement complex (Eastern Alps) during the Caledonian-Variscan cycle. Geologische Rundschau, 73, 47–68.CrossRefGoogle Scholar
  26. Furrer, H., & Hügi, Th. (1952). Telemagmatischer Gang im Nummulitenkalk bei Trubeln westlich Leukerbad (Kanton Wallis). Eclogae Geologicae Helvetiae, 45, 41–51.Google Scholar
  27. Gehrels, G. (2014). Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42, 127–149.CrossRefGoogle Scholar
  28. Gianola, O., Schmidt, M. W., von Quadt, A., Peytcheva, I., Luraschi, P., & Reusser, E. (2014). Continuity in geochemistry and time of the Tertiary Bergell intrusion (Central Alps). Swiss Journal of Geosciences, 107, 197–222.CrossRefGoogle Scholar
  29. Gifkins, C. C., Herrmann, W., & Large, R. R. (2005). Altered Volcanic Rocks. A guide to description and interpretation (p. 274). Hobart: Centre for Ore Deposit Research University of Tasmania.Google Scholar
  30. Gradstein, F. M., Ogg, J. G., Schmitz, M., & Ogg, G. (Eds.). (2012). The geologic time scale 2012 (p. 1176). Amsterdam: Elsevier.Google Scholar
  31. Guillong, M., von Quadt, A., Sakata, S., Peytcheva, I., & Bachmann, O. (2014). LA-ICP-MS Pb–U dating of young zircons from the Kos-Nisyros volcanic centre, SE Aegean arc. Journal of Analytical Atomic Spectrometry, 29, 963–970.CrossRefGoogle Scholar
  32. Hawkesworth, C. J., & Kemp, A. I. S. (2006). Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226, 144–162.CrossRefGoogle Scholar
  33. Ji, W. Q., Wu, F. Y., Tiepolo, M., Langone, A., & Braga, A. (2013). Zircon U-Pb age and Hf isotope constraints on the petrogenesis of the Alpine Peri-Adriatic intrusions. Mineralogical Magazine, 77, 1386.Google Scholar
  34. Kapferer, N., Mercolli, I., Berger, A., Ovtcharova, M., & Fügenschuh, B. (2012). Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps: 2. The Biella Volcanic Suite. Swiss Journal of Geosciences, 105, 67–84.CrossRefGoogle Scholar
  35. Lateltin, O. (1988). Les dépôts turbiditiques oligocènes d’avant-pays entre Annecy (Haute-Savoie) et le Sanetsch (Suisse). Ph.D. Theise, Fribourg University, Switzerland, p. 127.Google Scholar
  36. Lateltin, O., & Muller, D. (1987). Evolution paléogéographique du bassin des grès de Taveyannaz dans les Aravis (Haute-savoie) à la fin du Paléogène. Eclogae Geologicae Helvetiae, 80, 127–140.Google Scholar
  37. Letsch, D., Winkler, W., von Quadt, A., & Gallhofer, D. (2015). The volcano-sedimentary evolution of a post-Variscan intramontane basin in the Swiss Alps (Glarus Verrucano) as revealed by zircon U-Pb age dating and Hf isotope geochemistry. International Journal of Earth Sciences, 104, 123–145.CrossRefGoogle Scholar
  38. Liati, A., Gebauer, D., & Fanning, M. (2000). U-Pb SHRIMP dating of zircon from the Novate Granite (Bergell, Central Alps); evidence for Oligocene-Miocene magmatism, Jurassic/Cretaceous continental rifting and opening of the Valais Trough. Schweizerische mineralogische und petrographische Mitteilungen, 80, 305–316.Google Scholar
  39. Ludwig, K. R. (2012). User’s manual for Isoplot 3.75: A geochronological toolkit for Microsoft Excel (p. 75). Berkeley: Geochronology Center Special Publication.Google Scholar
  40. Martin, S., & Macera, P. (2014). Tertiary volcanism in the Italian Alps (Giudicarie fault zone, NE Italy): Insight for double alpine magmatic arc. Italian Journal of Geosciences, 133, 63–84.CrossRefGoogle Scholar
  41. Mayer, A., Cortiana, G., Dal Piaz, G. V., Deloule, E., De Pieri, R., & Jobstraibitzer, P. (2003). U-Pb single zircon ages of the Adamello batholith, Southern Alps. Memoir di Scienze Geologiche (Padova), 55, 151–167.Google Scholar
  42. McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.CrossRefGoogle Scholar
  43. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518.CrossRefGoogle Scholar
  44. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36, 247–270.CrossRefGoogle Scholar
  45. Pfiffner, A. O. (1986). Evolution of the north Alpine foreland basin in the Central Alps. Special Publication International Association Sedimentology, 8, 219–228.Google Scholar
  46. Pfiffner, A. Q. (2014). Geology of the Alps (pp. 140–165). West Sussex: Wiley.Google Scholar
  47. Rahn. M. (1994). Incipient metamorphism of the Glarus Alps: petrology of the Taveyanne greywacke and fission track dating. Unpubl. Ph.D. Thesis, University of Basel, Switzerland, p. 209.Google Scholar
  48. Rahn, M., Stern, W. B., & Frey, M. (1995). The origin of the NH Flysch: arguments from whole-rock and clinopyroxene composition. Schweizerische Mineralogische Petrographische Mitteilungen, 75, 213–224.Google Scholar
  49. Rosenberg, C. L. (2004). Shear zones and magma ascent: a model based on a review of the Tertiary magmatism in the Alps. Tectonics, 23, 1–21.CrossRefGoogle Scholar
  50. Rossetti, P., Agangi, A., Castelli, D., Padoan, M., & Ruffini, R. (2007). The Oligocene Biella pluton (western Alps, Italy): new insights on the magmatic vs. hydrothermal activity in the Valsessera roof zone. Periodico di Mineralogia, 76, 223–240.Google Scholar
  51. Rubatto, D., & Gebauer, D. (2000). Use of cathodoluminescence for U-Pb Zircon dating by ion microprobe: some examples from the Western Alps. In M. Pagel, Ph Blanc, V. Barbin, & D. Ohnenstetter (Eds.), Cathodoluminescence in Geosciences (pp. 373–400). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  52. Rubatto, D., & Hermann, J. (2003). Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67, 2173–2187.CrossRefGoogle Scholar
  53. Ruffini, R., Polino, R., Calegari, E., Hunziker, L. C., & Pfeiffer, H. R. (1997). Volcanic clast rich turbidites of the Taveyanne sandstone from the Thônes syncline (Savoie, France): records for a Tertiary postcollisional volcanism. Schweizerische Mineralogische und Petrographische Mitteilungen, 77, 161–174.Google Scholar
  54. Schaltegger, U., Brack, P., Ovtcharova, M., Peytcheva, I., Schoene, B., Stracke, A., et al. (2009). Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth and Planetary Science Letters, 286, 208–218.CrossRefGoogle Scholar
  55. Scheuring, B., Ahrendt, H., Hunziker, J. C., & Zingg, A. (1974). A Tertiary Andesite Complex NW Biella on the Boundary between central and southern Alps. Geology Rdsch, 63, 305–325.CrossRefGoogle Scholar
  56. Schoene, B., Schaltegger, U., Brack, P., Latkoczy, Ch., Stracke, A., & Günther, D. (2012). Rates of magma differentiation and emplacement in a ballooning pluton recorded by U-Pb TIMS-TEA, Adamello batholith, Italy. Earth and Planetary Science Letters, 355–356, 162–173.CrossRefGoogle Scholar
  57. Sciunnach, D., & Borsato, A. (1994). Plagioclase-arenites in the Molveno Lake area (Trento): record of an Eocene volcanic arc. Studi Trentini di Scienze Naturali, 69, 81–92.Google Scholar
  58. Shanks, III., W. C. Pat, (2012). Hydrothermal alteration in volcanogenic massive sulfide occurrence model. U.S. Geological Survey Scientific Investigations Report 2010–5070–C, Chap. 11, p. 12.Google Scholar
  59. Sharman, G. R., Hubbard, S. M., Covault, J. A., Hinsch, R., Linzer, H.-G., & Graham, S. A. (2017). Sediment routing evolution in the North Alpine foreland basin, Austria: Interplay of transverse and longitudinal sediment dispersal. Basin Research.  https://doi.org/10.1111/bre.12259.CrossRefGoogle Scholar
  60. Siegenthaler, C. (1974). Die Nordhelvetische Flysch-Gruppe im Sernftal (Kt. Glarus). Doctoral dissertation, Geologisches Institut der Eidg. Technischen Hochschule und der Universität Zürich, p. 83.Google Scholar
  61. Sinclair, H. D. (1992). Turbidite sedimentation during Alpine thrusting: The NH Flyschs of eastern Switzerland. Sedimentology, 39(5), 837–856.CrossRefGoogle Scholar
  62. Sinclair, H. D., & Tomasso, M. (2002). Depositional evolution of confined turbidite basins. Journal of Sedimentary Research, 72, 451–456.CrossRefGoogle Scholar
  63. Skopelitis, A. (2014). Formation of a tonalitic batholith through sequential accretion of magma batches. Unpubl. Ph.D. Thesis, Geneva University, Switzerland, p. 328.Google Scholar
  64. Skopelitis A., Brack P., Ulianov A., Bindeman I., & Schaltegger U. (2011). Tracing episodic magma accretion by zircon 18O/16O isotopes and U-Pb dating in the Adamello batholith, Italy. Goldschmidt Conference, 14–19. 8. 2011, Prague.Google Scholar
  65. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., et al. (2008). Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35.CrossRefGoogle Scholar
  66. Stern, R. J., Johnson, P. R., Kröner, A., & Yibas, B. (2004). Neoproterozoic ophiolites of the Arabian-Nubian shield. Developments in Precambrian Geology, 13, 95–128.CrossRefGoogle Scholar
  67. Stipp, Michael, Nommensen, L., Münker, C., Pomella, H., & Fügenschuh, B. (2013). New constraints on kinematics and timing of the Periadriatic Fault System from the petrology and Lu-Hf apatite geochronology of Giudicarian magmatic lamellae and the Presanella intrusion (Southern Alps, Italy). 11. Workshop on Alpine Geological Studies, 07-14.09.2013, Schladming, Austria.Google Scholar
  68. Tiepolo, M., Tribuzio, R., Ji, W. Q., Wu, F. Y., & Lustrino, M. (2014). Alpine Tethys closure as revealed by amphibole-rich mafic and ultramafic rocks from the Adamello and the Bergell intrusions (Central Alps). Journal of the Geological Society, 171, 793–799.CrossRefGoogle Scholar
  69. Trümpy, R. (1973). The timing of orogenic events in the Central Alps. In De Jong, K.A., & Schollen, R. (Eds.), Gravity and tectonics (pp. 229–251). New York: Wiley.Google Scholar
  70. von Blanckenburg, F., & Davies, J. H. (1995). Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14, 120–131.CrossRefGoogle Scholar
  71. von Blankenburg, F. (1992). Combined high-precision chronometry and geochemical tracing using accessory minerals: applied to the Central-Alpine Bergell intrusion (central Europe). Chemical Geology, 100, 19–40.CrossRefGoogle Scholar
  72. von Quadt, A., Gallhofer, D., Guillong, M., Peytcheva, I., Waelle, M., & Sakata, S. (2014). U/Pb dating of CA/non-CA treated zircons obtained by LA-ICP-MS and CA-TIMS techniques: impact for their geological interpretation. Journal of Analytical Atomic Spectrometry, 29, 1618–1629.CrossRefGoogle Scholar
  73. von Raumer, J. F., Bussy, F., Schaltegger, U., Schulz, B., & Stampfli, G. M. (2013). Pre-Mesozoic Alpine basements—their place in the European Paleozoic framework. Geological Society of America Bulletin, 125, 89–108.CrossRefGoogle Scholar
  74. Vuagnat M. (1944). Essai de subdivision à l'intérieur des grès de Taveyannaz grès d'Aldorf. Eclogae geologicae Helvetiae, 37, 427–430.Google Scholar
  75. Waibel, A. F. (1993). Nature and plate-tectonic significance of orogenic magmatism in the European Alps: a review. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 391–405.Google Scholar
  76. Woodhead, J. D., & Hergt, J. M. (2005). A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research, 29, 183–195.CrossRefGoogle Scholar
  77. Zurfluh, R. (2012). Eozäne vulkanoklastische Sandsteine im Nonsberg/Italien. Unpubl. BSc Thesis, ETH Zurich, Switzerland, p. 33.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  1. 1.Geological Institute, ETH ZurichZurichSwitzerland
  2. 2.Swiss Federal Nuclear Safety Inspectorate ENSIBruggSwitzerland
  3. 3.Institute for Geochemistry and Petrology, ETH ZurichZurichSwitzerland

Personalised recommendations