Swiss Journal of Geosciences

, Volume 111, Issue 3, pp 589–606 | Cite as

Distribution of benthic foraminiferal assemblages in the transitional environment of the Djerba lagoon (Tunisia)

  • Akram El KatebEmail author
  • Claudio Stalder
  • Christoph Neururer
  • Robin Fentimen
  • Jorge E. Spangenberg
  • Silvia Spezzaferri


The eastern edge of the Djerba Island represents an important tourist pole. However, studies describing the environmental processes affecting this Island are scarce. Although never studied before, the peculiar Djerba lagoon is well known by the local population and by tourists. In July 2014, surface sediment and seawater samples were collected in this lagoon to measure grain size, organic matter content and living foraminiferal assemblages to describe environmental conditions. Seawater samples were also collected and the concentration of 17 chemical elements were measured by ICP-OES. The results show that a salinity gradient along the studied transect clearly impacts seagrass distribution, creating different environmental conditions inside the Djerba lagoon. Biotic and abiotic parameters reflect a transitional environment from hypersaline to normal marine conditions. Living benthic foraminifera show an adaptation to changing conditions within the different parts of the lagoon. In particular, the presence of Ammonia spp. and Haynesina depressula correlates with hypersaline waters, whilst Brizalina striatula characterizes the parts of the lagoon colonized by seagrass. Epifaunal species, such as Rosalina vilardeboana and Amphistegina spp. colonize hard substrata present at the transition between the lagoon and the open sea.


Lagoon Djerba Island Foraminifera Transitional environment 

Supplementary material

15_2018_300_MOESM1_ESM.xlsx (30 kb)
Supplementary material 1 (XLSX 30 kb) Online Resource 1: Diversity indexes, counting and contribution (%) of living (stained) foraminifera in surface sediment samples


  1. Alve, E. (1991). Benthic foraminifera in sediment cores reflecting heavy metal pollution in Sorfjord, western Norway. Journal of Foraminiferal Research, 21(1), 1–19.Google Scholar
  2. Arfi, R. (1989). Annual cycles and budget of nutrients in Berre Lagoon (Mediterranean Sea, France). International Review of Hydrobiology, 74(1), 29–49.Google Scholar
  3. Basile-Doelsch, I., Meunier, J. D., & Parron, C. (2005). Another continental pool in the terrestrial silicon cycle. Nature, 433(7024), 399–402.Google Scholar
  4. Bassler-Veit, B., Barut, I. F., Meric, E., Avsar, N., Nazik, A., Kapan-Yeşilyurt, S., et al. (2013). Distribution of microflora, meiofauna, and macrofauna assemblages in the hypersaline environment of northeastern Aegean Sea coasts. Journal of Coastal Research, 29(4), 883–898.Google Scholar
  5. Bellucci, L. G., Frignani, M., Paolucci, D., & Ravanelli, M. (2002). Distribution of heavy metals in sediments of the Venice Lagoon: The role of the industrial area. Science of the Total Environment, 295(1), 35–49.Google Scholar
  6. Ben-Ameur, W. B., de Lapuente, J., El Megdiche, Y., Barhoumi, B., Trabelsi, S., Camps, L., et al. (2012). Oxidative stress, genotoxicity and histopathology biomarker responses in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) liver from Bizerte Lagoon (Tunisia). Marine Pollution Bulletin, 64(2), 241–251.Google Scholar
  7. Bennett, P. C. (1991). Quartz dissolution in organic-rich aqueous systems. Geochimica et Cosmochimica Acta, 55(7), 1781–1797.Google Scholar
  8. Bennett, P. C., Melcer, M. E., Siegel, D. I., & Hassett, J. P. (1988). The dissolution of quartz in dilute aqueous solutions of organic acids at 25 °C. Geochimica et Cosmochimica Acta, 52(6), 1521–1530.Google Scholar
  9. Bennett, P., & Siegel, D. I. (1987). Increased solubility of quartz in water due to complexing by organic compounds. Nature, 326(6114), 684–686.Google Scholar
  10. Béranger, K., Mortier, L., Gasparini, G. P., Gervasio, L., Astraldi, M., & Crépon, M. (2004). The dynamics of the Sicily Strait: A comprehensive study from observations and models. Deep Sea Research Part II: Topical Studies in Oceanography, 51(4), 411–440.Google Scholar
  11. Bouchet, V. M., Goberville, E., & Frontalini, F. (2018). Benthic foraminifera to assess Ecological Quality Statuses in Italian transitional waters. Ecological Indicators, 84, 130–139.Google Scholar
  12. Brahim, M., Atoui, A., Sammari, C., & Aleya, L. (2014). Surface sediment dynamics along the eastern coast of Djerba Island (Gabes Gulf, Tunisia). Journal of African Earth Sciences, 92, 45–54.Google Scholar
  13. Bruland, K. W., & Lohan, M. C. (2006). Controls of trace metals in seawater. The oceans and marine geochemistry, 6, 23–47.Google Scholar
  14. Bulger, A. J., Hayden, B. P., Monaco, M. E., Nelson, D. M., & McCormick-Ray, M. G. (1993). Biologically-based estuarine salinity zones derived from a multivariate analysis. Estuaries and Coasts, 16(2), 311–322.Google Scholar
  15. Buosi, C., Châtelet, E. A. D., & Cherchi, A. (2012). Benthic foraminiferal assemblages in the current-dominated Strait of Bonifacio (Mediterranean Sea). The Journal of Foraminiferal Research, 42(1), 39–55.Google Scholar
  16. Callender, E. (2003). Heavy metals in the environment—Historical trends. In B.S. Lokkar (Ed.), Environmental geochemistry, H.D. Holland, K.K. Turekian (Eds.), Journal of treatise on geochemistry (pp. 67–106). Elsevier: Pergamon Oxford.Google Scholar
  17. Chambouvet, A., Laabir, M., Sengco, M., Vaquer, A., & Guillou, L. (2011). Genetic diversity of Amoebophryidae (Syndiniales) during Alexandrium catenella/tamarense (Dinophyceae) blooms in the Thau lagoon (Mediterranean Sea, France). Research in Microbiology, 162(9), 959–968.Google Scholar
  18. Chouba, L., Kraiem, M., Njimi, W., Tissaoui, C. H., Thompson, J. R., & Flower, R. J. (2007). Seasonal variation of heavy metals (Cd, Pb and Hg) in sediments and in mullet, Mugil cephalus (Mugilidae), from the Ghar El Melh Lagoon (Tunisia). Transitional Waters Bulletin, 1(4), 45–52.Google Scholar
  19. Cimerman, F., & Langer, M. R. (1991). Mediterranean Foraminifera (Vol. 30, p. 118). Ljubljana, Dela Opera.Google Scholar
  20. Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User Manual/Tutorial. Primer-E: Plymouth.Google Scholar
  21. Cooper, L. W., & DeNiro, M. J. (1989). Stable carbon isotope variability in the seagrass Posidonia oceanica: evidence for light intensity effects. Marine Ecology Progress Series, 50(3), 225–229.Google Scholar
  22. de Freitas Prazeres, M., Martins, S. E., & Bianchini, A. (2012). Assessment of water quality in coastal waters of Fernando de Noronha, Brazil: Biomarker analyses in Amphistegina lessonii. Journal of Foraminiferal Research, 42(1), 56–65.Google Scholar
  23. Dell’Anno, A., Mei, M. L., Pusceddu, A., & Danovaro, R. (2002). Assessing the trophic state and eutrophication of coastal marine systems: a new approach based on the biochemical composition of sediment organic matter. Marine Pollution Bulletin, 44(7), 611–622.Google Scholar
  24. Delpy, F., Pagano, M., Blanchot, J., Carlotti, F., & Thibault-Botha, D. (2012). Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France). Marine Pollution Bulletin, 64(9), 1921–1932.Google Scholar
  25. Delvaux, D., Martin, H., Leplat, P., & Paulet, J. (1990). Geochemical characterization of sedimentary organic matter by means of pyrolysis kinetic parameters. Organic Geochemistry, 16(1–3), 175–187.Google Scholar
  26. Dimiza, M. D., Triantaphyllou, M. V., Koukousioura, O., Hallock, P., Simboura, N., Karageorgis, A. P., et al. (2016). The Foram Stress Index: A new tool for environmental assessment of soft-bottom environments using benthic foraminifera. A case study from the Saronikos Gulf, Greece. Eastern Mediterranean. Ecological Indicators, 60, 611–621.Google Scholar
  27. Dridi, S., Romdhane, M. S., & Elcafsi, M. H. (2007). Seasonal variation in weight and biochemical composition of the Pacific oyster, Crassostrea gigas in relation to the gametogenic cycle and environmental conditions of the Bizert lagoon, Tunisia. Aquaculture, 263(1), 238–248.Google Scholar
  28. El Kateb, A., Stalder, C., Neururer, C., Pisapia, C., & Spezzaferri, S. (2016). Correlation between pollution and decline of Scleractinian Cladocora caespitosa (Linnaeus, 1758) in the Gulf of Gabes. Heliyon, 2(11), e00195.Google Scholar
  29. El Zrelli, R., Courjeault-Radé, P., Rabaoui, L., Daghbouj, N., Mansour, L., Balti, R., Castet, S., Attia, F., Michel., S., & Bejaoui, N. (2017). Biomonitoring of coastal pollution in the Gulf of Gabes (SE, Tunisia): Use of Posidonia oceanica seagrass as a bioindicator and its mat as an archive of coastal metallic contamination. Environmental Science and Pollution Research. Scholar
  30. El-Gamal, A. A., Peterson, R. N., & Burnett, W. C. (2012). Detecting freshwater inputs via groundwater discharge to Marina Lagoon, Mediterranean Coast, Egypt. Estuaries and coasts, 35(6), 1486–1499.Google Scholar
  31. Emrich, K., Martinez-Colon, M., & Alegria, H. (2017). Is untreated seawage impacting coral reefs of Caye Caulker, Belize? Journal of Foraminiferal Research, 47(1), 20–33.Google Scholar
  32. Erginal, A. E., Ekinci, Y. L., Demirci, A., Bozcu, M., Ozturk, M. Z., Avcioglu, M., et al. (2013). First record of beachrock on Black Sea coast of Turkey: Implications for Late Holocene sea-level fluctuations. Sedimentary Geology, 294, 294–302.Google Scholar
  33. Espitalié, J., Deroo, G., & Marquis, F. (1985). La pyrolyse Rock-Eval et ses applications. Première partie. Revue de l’Institut français du Pétrole, 40(5), 563–579.Google Scholar
  34. Fernández-Torquemada, Y., & Sánchez-Lizaso, J. L. (2005). Effects of salinity on leaf growth and survival of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Journal of Experimental Marine Biology and Ecology, 320(1), 57–63.Google Scholar
  35. Fernández-Torquemada, Y., Sánchez-Lizaso, J. L., & González-Correa, J. M. (2005). Preliminary results of the monitoring of the brine discharge produced by the SWRO desalination plant of Alicante (SE Spain). Desalination, 182(1–3), 395–402.Google Scholar
  36. Field, J. G., Clarke, K. R., & Warwick, R. M. (1982). A practical strategy for analysing multispecies distribution patterns. Marine ecology progress series, 8(1), 37–52.Google Scholar
  37. Frontalini, F., Buosi, C., Da Pelo, S., Coccioni, R., Cherchi, A., & Bucci, C. (2009). Benthic foraminifera as bio-indicators of trace element pollution in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy). Marine Pollution Bulletin, 58(6), 858–877.Google Scholar
  38. Gacia, E., Invers, O., Manzanera, M., Ballesteros, E., & Romero, J. (2007). Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow. Estuarine, Coastal and Shelf Science, 72(4), 579–590.Google Scholar
  39. Gamito, S. (2008). Three main stressors acting on the Ria Formosa lagoonal system (Southern Portugal): Physical stress, organic matter pollution and the land–ocean gradient. Estuarine, Coastal and Shelf Science, 77(4), 710–720.Google Scholar
  40. García-Pintado, J., Martínez-Mena, M., Barberá, G. G., Albaladejo, J., & Castillo, V. M. (2007). Anthropogenic nutrient sources and loads from a Mediterranean catchment into a coastal lagoon: Mar Menor, Spain. Science of the Total Environment, 373(1), 220–239.Google Scholar
  41. Gilabert, J. (2001). Seasonal plankton dynamics in a Mediterranean hypersaline coastal lagoon: The Mar Menor. Journal of Plankton Research, 23(2), 207–218.Google Scholar
  42. Gooday, A. J. (2003). Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: Environmental influences on faunal characteristics. Advances in Marine Biology, 46, 1–90.Google Scholar
  43. Gupta, B. K. S., Turner, R. E., & Rabalais, N. N. (1996). Seasonal oxygen depletion in continental-shelf waters of Louisiana: Historical record of benthic foraminifers. Geology, 24(3), 227–230.Google Scholar
  44. Hallock, P., Lidz, B. H., Cockey-Burkhard, E. M., & Donnelly, K. B. (2003). Foraminifera as bioindicators in coral reef assessment and monitoring: The FORAM Index. Environmental Monitoring and Assessment, 81(1–3), 221–238.Google Scholar
  45. Hedges, J. I., Keil, R. G., & Benner, R. (1997). What happens to terrestrial organic matter in the ocean? Organic Geochemistry, 27(5), 195–212.Google Scholar
  46. Hintz, C. J., Chandler, G. T., Bernhard, J. M., McCorkle, D. C., Havach, S. M., Blanks, J. K., et al. (2004). A physicochemically constrained seawater culturing system for production of benthic foraminifera. Limnology and Oceanography: Methods, 2(6), 160–170.Google Scholar
  47. Hottinger, L., & Halicz, E. R. (1993). Recent Foraminiferida from the Gulf of Aqaba, Red Sea (Vol. 33, p. 412) Ljubljana, Dela Opera.Google Scholar
  48. Jorissen, F., Fontanier, C., & Thomas, E. (2007). Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. In C. Hillaire-Marcel & A. de Vernal (Eds.), Proxies in late cenozoic paleoceanography (pp. 227–242). Amsterdam: Elsevier.Google Scholar
  49. Kaiho, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22(8), 719–722.Google Scholar
  50. Katz, B. J. (1983). Limitations of ‘Rock-Eval’pyrolysis for typing organic matter. Organic Geochemistry, 4(3–4), 195–199.Google Scholar
  51. Khiari, R., Mhenni, M. F., Belgacem, M. N., & Mauret, E. (2010). Chemical composition and pulping of date palm rachis and Posidonia oceanica–A comparison with other wood and non-wood fibre sources. Bioresource Technology, 101(2), 775–780.Google Scholar
  52. Kjerfve, B. (1986). Comparative oceanography of coastal lagoons. In D. A. Wolfe (Ed.), Estuarine variability (pp. 63–81). New York: Academic.Google Scholar
  53. Kjerfve, B. (1994). Coastal lagoons. In B. Kjerfve (Ed.), Coastal lagoon processes (Vol. 60, pp. 1–8). Amsterdam: Elsevier Oceanographic Series.Google Scholar
  54. Kjerfve, B., Schettini, C. A. F., Knoppers, B., Lessa, G., & Ferreira, H. O. (1996). Hydrology and salt balance in a large, hypersaline coastal lagoon: Lagoa de Araruama, Brazil. Estuarine, Coastal and Shelf Science, 42(6), 701–725.Google Scholar
  55. Lafargue, E., Marquis, F., & Pillot, D. (1998). Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l’institut français du pétrole, 53(4), 421–437.Google Scholar
  56. Lamptey, E., & Armah, A. K. (2008). Factors affecting macrobenthic fauna in a tropical hypersaline coastal lagoon in Ghana, West Africa. Estuaries and Coasts, 31(5), 1006–1019.Google Scholar
  57. Langford, F. F., & Blanc-Valleron, M. M. (1990). Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon (1). AAPG Bulletin, 74(6), 799–804.Google Scholar
  58. Lepoint, G., Cox, A. S., Dauby, P., Poulicek, M., & Gobert, S. (2006). Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter. Marine Biology Research, 2(5), 355–365.Google Scholar
  59. Lepoint, G., Dauby, P., Fontaine, M., Bouquegneau, J. M., & Gobert, S. (2003). Carbon and nitrogen isotopic ratios of the seagrass Posidonia oceanica: Depth-related variations. Botanica Marina, 46(6), 555–561.Google Scholar
  60. Livingstone, D. R., Lemaire, P., Matthews, A., Peters, L. D., Porte, C., Fitzpatrick, P. J., et al. (1995). Assessment of the impact of organic pollutants on goby (Zosterisessor ophiocephalus) and mussel (Mytilus galloprovincialis) from the Venice Lagoon, Italy: Biochemical studies. Marine Environmental Research, 39(1–4), 235–240.Google Scholar
  61. Loeblich Jr, A. R. & Tappan, H. (1994). Foraminifera of the Sahul Shelf and Timor Sea (p. 661.) Cushman Foundation for Foraminiferal Research, Special Publication 31.Google Scholar
  62. Lopez, G. R., & Levinton, J. S. (1987). Ecology of deposit-feeding animals in marine sediments. The Quarterly Review of Biology, 62(3), 235–260.Google Scholar
  63. Louiz, I., Kinani, S., Gouze, M. E., Ben-Attia, M., Menif, D., Bouchonnet, S., et al. (2008). Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: Contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs). Science of the Total Environment, 402(2), 318–329.Google Scholar
  64. Mateu-Vicens, G., Box, A., Deudero, S., & Rodríguez, B. (2010). Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass Posidonia oceanica and invasive macroalgae Caulerpa spp. The Journal of Foraminiferal Research, 40(2), 134–147.Google Scholar
  65. Martins, M. V. A., Helali, M. A., Zaaboub, N., Boukef-BenOmrane, I., Frontalini, F., Reis, D., et al. (2016). Organic matter quantity and quality, metals availability and foraminiferal assemblages as environmental proxy applied to the Bizerte Lagoon (Tunisia). Marine Pollution Bulletin, 105(1), 161–179.Google Scholar
  66. Martins, M. V. A., Zaaboub, N., Aleya, L., Frontalini, F., Pereira, E., Miranda, P., et al. (2015). Environmental quality assessment of Bizerte Lagoon (Tunisia) using living foraminifera assemblages and a multiproxy approach. PLoS One, 10(9), e0137250.Google Scholar
  67. Mateu-Vicens, G., Khokhlova, A., & Sebastián-Pastor, T. (2014). Epiphytic foraminiferal indices as bioindicators in Mediterranean seagrass meadows. Journal of Foraminiferal Research, 44(3), 325–339.Google Scholar
  68. Milker, Y., & Schmiedl, G. (2012). A taxonomic guide to modern benthic shelf foraminifera of the western Mediterranean Sea. Palaeontologia electronica, 15(2), 1–134.Google Scholar
  69. Mojtahid, M., Jorissen, F., Lansard, B., Fontanier, C., Bombled, B., & Rabouille, C. (2009). Spatial distribution of live benthic foraminifera in the Rhône prodelta: Faunal response to a continental–marine organic matter gradient. Marine Micropaleontology, 70(3), 177–200.Google Scholar
  70. Montague, C. L., & Ley, J. A. (1993). A possible effect of salinity fluctuation on abundance of benthic vegetation and associated fauna in northeastern Florida Bay. Estuaries and Coasts, 16(4), 703–717.Google Scholar
  71. Morel, F. M. M., & Price, N. M. (2003). The biogeochemical cycles of trace metals in the oceans. Science, 300(5621), 944–947.Google Scholar
  72. Murray, J. W. (2006). Ecology and applications of benthic foraminifera (p. 426). Cambridge: Cambridge University Press.Google Scholar
  73. Mzoughi, N., Lespes, G., Bravo, M., Dachraoui, M., & Potin-Gautier, M. (2005). Organotin speciation in Bizerte lagoon (Tunisia). Science of the Total Environment, 349(1), 211–222.Google Scholar
  74. Nicolaidou, A., & Nott, J. A. (1999). The role of the marine gastropod Cerithium vulgatum in the biogeochemical cycling of metals. Nato Science Series 2 Environmental Security, 59, 137–146.Google Scholar
  75. Nixon, S. W. (1982). Nutrient dynamics, primary production and fisheries yields of lagoons. Oceanologica Acta, Special Issue, 357–371.Google Scholar
  76. Nixon, S. W. (1995). Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41(1), 199–219.Google Scholar
  77. Nunez-Betelu, L., & Baceta, J. I. (1994). Basics and application of Rock-Eval/TOC pyrolysis: An example from the uppermost Paleocene/lowermost Eocene in the Basque Basin, Western Pyrenees. Munibe Ciencias naturales, 46, 43–62.Google Scholar
  78. Ott, J. A. (1980). Growth and production in Posidonia oceanica (L.) Delile. Marine Ecology, 1(1), 47–64.Google Scholar
  79. Otvos, E. G. (1985). Barrier platforms: Northern Gulf of Mexico. Marine Geology, 63(1–4), 285–305.Google Scholar
  80. Phleger, F. B. (1965). Patterns of living marsh foraminifera in south Texas coastal lagoons. Boletin de la Sociedad Geologica Mexicana, 28(1), 1–44.Google Scholar
  81. Point, D., Monperrus, M., Tessier, E., Amouroux, D., Chauvaud, L., Thouzeau, G., et al. (2007). Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France). Estuarine, Coastal and Shelf Science, 72(3), 457–471.Google Scholar
  82. Polovodova, I., Nikulina, A., Schönfeld, J., & Dullo, W. C. (2009). Recent benthic foraminifera in the Flensburg Fjord (western Baltic Sea). Journal of Micropalaeontology, 28(2), 131–142.Google Scholar
  83. Romero, J., Pergent, G., Pergent-Martini, C., Mateo, M. A., & Regnier, C. (1992). The detritic compartment in a Posidonia oceanica meadow: Litter features, decomposition rates, and mineral stocks. Marine Ecology, 13(1), 69–83.Google Scholar
  84. Ruivo, M. (1973). Marine pollution and sea life (p. 664). London: Fishing News.Google Scholar
  85. Sammari, C., Koutitonsky, V. G., & Moussa, M. (2006). Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia. Continental Shelf Research, 26(3), 338–350.Google Scholar
  86. Sanchez-Lizaso, J. L., Romero, J., Ruiz, J., Gacia, E., Buceta, J. L., Invers, O., et al. (2008). Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: Recommendations to minimize the impact of brine discharges from desalination plants. Desalination, 221(1–3), 602–607.Google Scholar
  87. Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S., & Spezzaferri, S. (2012). The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies. Marine Micropaleontology, 94, 1–13.Google Scholar
  88. Sfriso, A., Marcomini, A., & Pavoni, B. (1987). Relationships between macroalgal biomass and nutrient concentrations in a hypertrophic area of the Venice Lagoon. Marine Environmental Research, 22(4), 297–312.Google Scholar
  89. Sfriso, A., Pavoni, B., Marcomini, A., & Orio, A. A. (1992). Macroalgae, nutrient cycles, and pollutants in the Lagoon of Venice. Estuaries and Coasts, 15(4), 517–528.Google Scholar
  90. Shahidul, I. M., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Marine Pollution Bulletin, 48(7–8), 624–649.Google Scholar
  91. Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10(2), 126–139.Google Scholar
  92. Smith, B. N., & Epstein, S. (1971). Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47(3), 380–384.Google Scholar
  93. Strasser, A., Davaud, E. & Jedoui, Y. (1989). Carbonate cements in Holocene beachrock: example from Bahiret el Biban, southeastern Tunisia. Sedimentary Geology, 62, 23–46.Google Scholar
  94. Taylor, D., Nixon, S., Granger, S., & Buckley, B. (1995). Nutrient limitation and the eutrophication of coastal lagoons. Marine Ecology Progress Series, 127(1/3), 235–244.Google Scholar
  95. Türkmen, M., Türkmen, A., & Tepe, Y. (2011). Comparison of metals in tissues of fish from Paradeniz Lagoon in the coastal area of Northern East Mediterranean. Bulletin of Environmental Contamination and Toxicology, 87(4), 381.Google Scholar
  96. Tyson, R. V. (1995). Abundance of organic matter in sediments: TOC, hydrodynamic equivalence, dilution and flux effects. In R. V. Tyson (Ed.), Sedimentary organic matter (pp. 81–118). Dordrecht: Springer.Google Scholar
  97. Van der Zwaan, G. J., Duijnstee, I. A. P., Den Dulk, M., Ernst, S. R., Jannink, N. T., & Kouwenhoven, T. J. (1999). Benthic foraminifers: proxies or problems?: A review of paleocological concepts. Earth-Science Reviews, 46(1), 213–236.Google Scholar
  98. Vela, A., Pasqualini, V., Leoni, V., Djelouli, A., Langar, H., Pergent, G., et al. (2008). Use of SPOT 5 and IKONOS imagery for mapping biocenoses in a Tunisian Coastal Lagoon (Mediterranean Sea). Estuarine, Coastal and Shelf Science, 79(4), 591–598.Google Scholar
  99. Vizzini, S., Sarà, G., Mateo, M. A., & Mazzola, A. (2003). δ13C and δ15N variability in Posidonia oceanica associated with seasonality and plant fraction. Aquatic Botany, 76(3), 195–202.Google Scholar
  100. Vizzini, S., Sara, G., Michener, R. H., & Mazzola, A. (2002). The role and contribution of the seagrass Posidonia oceanica (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecologica, 23(4), 277–285.Google Scholar
  101. Vousdoukas, M. I., Velegrakis, A. F., & Plomaritis, T. A. (2007). Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth-Science Reviews, 85(1-2), 23–46.Google Scholar
  102. Walton, W. R., & Sloan, B. J. (1990). The genus Ammonia Bruennich, 1772; Its geographic distribution and morphologic variability. Journal of Foraminiferal Research, 20(2), 128–156.Google Scholar
  103. Whitlatch, R. B. (1981). Animal-sediment relationships in intertidal marine benthic habitats: Some determinants of deposit-feeding species diversity. Journal of Experimental Marine Biology and Ecology, 53(1), 31–45.Google Scholar

Copyright information

© Swiss Geological Society 2018

Authors and Affiliations

  • Akram El Kateb
    • 1
    Email author
  • Claudio Stalder
    • 2
  • Christoph Neururer
    • 1
  • Robin Fentimen
    • 1
  • Jorge E. Spangenberg
    • 3
  • Silvia Spezzaferri
    • 1
  1. 1.Department of GeosciencesUniversity of FribourgFribourgSwitzerland
  2. 2.Federal Office of Public Health FOPHBernSwitzerland
  3. 3.Institut of Earth Surface Dynamics (IDYST)University of LausanneLausanneSwitzerland

Personalised recommendations