Bicrossed products with the Taft algebra

  • A. L. AgoreEmail author
  • L. Năstăsescu


Let G be a group which admits a generating set consisting of finite order elements. We prove that any Hopf algebra which factorizes through the Taft algebra and the group Hopf algebra K[G] (equivalently, any bicrossed product between the aforementioned Hopf algebras) is isomorphic to a smash product between the same two Hopf algebras. The classification of these smash products is shown to be strongly linked to the problem of describing the group automorphisms of G. As an application, we completely describe by generators and relations and classify all bicrossed products between the Taft algebra and the group Hopf algebra \(K[D_{2n}]\), where \(D_{2n}\) denotes the dihedral groups.


Bicrossed product The factorization problem Classification of Hopf algebras Taft algebra 

Mathematics Subject Classification

16T05 16S40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Agore, A.L.: Hopf algebras which factorize through the Taft algebra \(T_{m^{2}}(q)\) and the group Hopf algebra \(K[C_n]\). Symmetry Integrability Geom. Methods Appl. 14, 027 (2018)zbMATHGoogle Scholar
  2. 2.
    Agore, A.L.: Classifying bicrossed products of two Taft algebras. J. Pure Appl. Algebra 222, 914–930 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Agore, A.L., Bontea, C.G., Militaru, G.: Classifying bicrossed products of Hopf algebras. Algebr. Represent. Theory 17, 227–264 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Agore, A.L., Chirvăsitu, A., Ion, B., Militaru, G.: Bicrossed products for finite groups. Algebr. Represent. Theory 12, 481–488 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Andrada, A., Salamon, S.: Complex product structures on Lie algebras. Forum Math. 17, 261–295 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Angiono, I., Galindo, C., Vendramin, L.: Hopf braces and Yang–Baxter operators. Proc. AMS 145, 1981–1995 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bontea, C.G.: Classifying bicrossed products of two Sweedler’s Hopf algebras. Czech. Math. J. 64, 419–431 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Caenepeel, S., Ion, B., Militaru, G., Zhu, S.: The factorization problem and the smash biproduct of algebras and coalgebras. Algebr. Represent. Theory 3, 19–42 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cap, A., Schichl, H., Vanzura, J.: On twisted tensor product of algebras. Commun. Algebra 23, 4701–4735 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, X.-W., Huang, H.-L., Ye, Y., Zhang, P.: Monomial Hopf algebras. J. Algebra 275, 212–232 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dăscălescu, S., Iovanov, M.C., Năstăsescu, C.: Path subcoalgebras, finiteness properties and quantum groups. J. Noncommut. Geom. 7, 737–766 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gateva-Ivanova, T., Majid, S.: Matched pairs approach to set theoretic solutions of the Yang–Baxter equation. J. Algebra 319, 1462–1529 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Golasiński, M., Gonçalves, D.: On automorphisms of split metacyclic groups. Manuscr. Math. 128, 251–273 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guccione, J.A., Guccione, J.J., Valqui, C.: Twisted planes. Commun. Algebra 38, 1930–1956 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Iovanov, M.C.: Infinite dimensional serial algebras and their representations. J. Algebra 514, 330–371 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kassel, C.: Quantum groups, Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)Google Scholar
  17. 17.
    Keilberg, M.: Automorphisms of the doubles of purely non-abelian finite groups. Algebr. Represent. Theory 18, 1267–1297 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kosmann-Schwarzbach, Y., Magri, F.: Poisson-Lie groups and complete integrability. I. Drinfel’d bialgebras, dual extensions and their canonical representations. Ann. Inst. H. Poincare Phys. Theor. 49, 433–460 (1988)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Liu, G., Li, F.: Pointed Hopf algebras of finite corepresentation type and their classifications. Proc. AMS 135, 649–657 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Majid, S.: Matched pairs of Lie groups and Hopf algebra bicrossproducts. Nuclear Phys. B 6, 422–424 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Majid, S.: Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130, 17–64 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jara, P., López Peña, J., Navarro, G., Ştefan, D.: On the classification of twisting maps between \(K^n\) and \(K^m\). Algebr. Represent. Theory 14, 869–895 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras. Commun. Algebra 9, 841–882 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.“Simion Stoilow” Institute of Mathematics of the Romanian AcademyBucharestRomania
  2. 2.Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations