Archiv der Mathematik

, Volume 113, Issue 1, pp 59–62 | Cite as

Semialgebraic version of Whitney’s extension theorem

  • Beata Kocel-Cynk
  • Wiesław PawłuckiEmail author
  • Anna Valette
Open Access


In this note we prove a semialgebraic counterpart of Whitney’s extension theorem.


Whitney field Extension theorem \(\mathcal {C}^p\)-functions Nash functions 

Mathematics Subject Classification

58C25 14P20 57R35 03C64 



  1. 1.
    Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Springer, Berlin (1987)zbMATHGoogle Scholar
  2. 2.
    Efroymson, G.A.: The Extension Theorem for Nash Functions. Real algebraic geometry and quadratic forms (Rennes, 1981), 343–357, Lecture Notes in Math. 959, Springer, Berlin (1982)Google Scholar
  3. 3.
    Fischer, A.: Smooth functions in o-minimal structures. Adv. Math. 218, 496–514 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hörmander, L.: On the division of distributions by polynomials. Ark. Mat. 3, 555–568 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kurdyka, K., Pawłucki, W.: Subanalytic version of Whitney’s extension theorem. Studia Math. 124, 269–280 (1997)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kurdyka, K., Pawłucki, W.: O-minimal version of Whitney’s extension theorem. Studia Math. 224(1), 81–96 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Łojasiewicz, S.: Sur le problème de la division (French). Studia Math. 18, 87–136 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Malgrange, B.: Ideals of Differentiable Functions. Oxford University Press, Oxford (1966)zbMATHGoogle Scholar
  9. 9.
    Shiota, M.: Approximation theorems for Nash mappings and Nash manifolds. Trans. Am. Math. Soc. 293(1), 319–337 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Shiota, M.: Nash Manifolds. Lecture Notes in Mathematics, vol. 1269. Springer, Berlin (1987)Google Scholar
  11. 11.
    Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Instytut Matematyki Politechniki KrakowskiejKrakówPoland
  2. 2.Instytut Matematyki Uniwersytetu JagiellońskiegoKrakówPoland

Personalised recommendations