Archiv der Mathematik

, Volume 113, Issue 1, pp 43–51 | Cite as

The strong Lefschetz property for complete intersections defined by products of linear forms

  • Tadahito HarimaEmail author
  • Akihito Wachi
  • Junzo Watanabe


We prove the strong Lefschetz property for certain complete intersections defined by products of linear forms, using a characterization of the strong Lefschetz property in terms of central simple modules.


Strong Lefschetz property Complete intersection Central simple module 

Mathematics Subject Classification

Primary 13C40 Secondary 13E10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Abedelfatah, A.: On the Eisenbud–Green–Harris conjecture. Proc. Am. Math. Soc. 143, 105115 (2015)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Harima, T., Maeno, T., Morita, H., Numata, Y., Wachi, A., Watanabe, J.: The Lefschetz Properties, 2080. Lecture Notes in Math. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    Harima, T., Migliore, J.C., Nagel, U., Watanabe, J.: The weak and strong Lefschetz properties for Artinian K -algebras. J. Algebra 262, 99–126 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Harima, T., Watanabe, J.: The finite free extension of Artinian K-algebra and the strong Lefschetz property. Rend. Semin. Mat. Univ. Padova 110, 119–146 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Harima, T., Watanabe, J.: The central simple modules of Artinian Gorenstein algebras. J. Pure Appl. Algebra 210, 447–463 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Harima, T., Watanabe, J.: The strong Lefschetz property for Artinian algebras with non-standard grading. J. Algebra 311, 511–537 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Harima, T., Watanabe, J.: The commutator algebra of a nilpotent matrix and an application to the theory of commutative Artinian algebras. J. Algebra 319, 2545–2570 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Iarrobino, A.: Associated graded algebra of a Gorenstein Artin algebra. Mem. Am. Math. Soc. 107(514), viii+115 (1994)Google Scholar
  9. 9.
    Kubitzke, M., Miró-Roig, R., Murai, S., Wachi, A.: Lefschetz properties for complete intersection ideals generated by products of linear forms. Proc. Amer. Math. Soc. 146(8), 3249–3256 (2018)Google Scholar
  10. 10.
    Migliore, J., Nagel, U.: Survey article: a tour of the weak and strong Lefschetz properties. J. Commut. Algebra 5, 329–358 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Watanabe, J.: The Dilworth number of Artinian rings and finite posets with rank function. Adv. Stud. Pure Math. 11, 303–312 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tadahito Harima
    • 1
    Email author
  • Akihito Wachi
    • 2
  • Junzo Watanabe
    • 3
  1. 1.Department of Mathematics EducationNiigata UniversityNiigataJapan
  2. 2.Department of MathematicsHokkaido University of EducationKushiroJapan
  3. 3.Department of MathematicsTokai UniversityHiratsukaJapan

Personalised recommendations