Advertisement

Archiv der Mathematik

, Volume 113, Issue 1, pp 37–41 | Cite as

The maximal discrete extension of \(SL_2(\mathcal {\scriptstyle {O}}_K)\) for an imaginary quadratic number field K

  • Aloys KriegEmail author
  • Joana Rodriguez
  • Annalena Wernz
Article
  • 11 Downloads

Abstract

Let \(\mathcal {\scriptstyle {O}}_K\) be the ring of integers of an imaginary quadratic number field K. In this paper we give a new description of the maximal discrete extension of the group \(SL_2(\mathcal {\scriptstyle {O}}_K)\) inside \(SL_2(\mathbb {C})\), which uses generalized Atkin–Lehner involutions. Moreover we find a natural characterization of this group in SO(1, 3).

Keywords

Discrete groups Maximal discrete extension Atkin–Lehner involution. 

Mathematics Subject Classification

11F06 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Atkin, A.O.L., Lehner, J.: Hecke operators on \(\Gamma _0(m)\). Math. Ann. 185, 134–160 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Braun, H.: Hermitian modular functions. Math. Ann. 50, 827–855 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Elstrodt, J., Grunewald, F., Mennicke, J.: Groups Acting on Hyperbolic Space. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gallenkämper, J., Krieg, A.: The Hecke algebras for the orthogonal group \(SO(2,3)\) and the paramodular group of degree \(2\). Int. J. Number Theory 24, 2409–2423 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hein, W.: Einführung in die Struktur- und Darstellungstheorie der klassischen Gruppen. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  6. 6.
    Köhler, G.: Erweiterungsfähigkeit paramodularer Gruppen. Nachr. Akad. Wiss. Göttingen 1968, 229–238 (1967)zbMATHGoogle Scholar
  7. 7.
    Krieg, A.: Integral orthogonal groups. In: Hagen, T., et al. (eds.) Dynamical Systems, Number Theory and Applications, pp. 177–195. World Scientific, Hackensack (2016). N.J. editionCrossRefGoogle Scholar
  8. 8.
    Wernz, A.: On Hermitian modular groups and modular forms. PhD thesis, RWTH Aachen (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lehrstuhl A für MathematikRWTH Aachen UniversityAachenGermany

Personalised recommendations