Advertisement

Hypercyclic composition operators on the \(S^p \) space with automorphism symbols

  • Shi-An Han
  • Ze-Hua ZhouEmail author
Article
  • 12 Downloads

Abstract

Let \(S^p\) be the space of holomorphic functions whose derivative lies in the classical Hardy space \(H^p\) over the unit disk. We prove in this paper that the composition operator \(C_\varphi \) with \(\varphi \) an automorphism is hypercyclic on \(S^p\), \(0<p<1\), if and only if \(\varphi \) has no interior fixed point. This answers affirmatively a problem posed by Colonna and Martínez-Avendaño in the paper “Hypercyclicity of composition operators on Banach spaces of analytic functions” (Complex Anal Oper Theory 12(1): 305–323, 2018).

Keywords

Composition operator Hypercyclic \(S^p\) space Automorphism 

Mathematics Subject Classification

47A16 47B33 47B38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Bayart, F., Matheron, É.: Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces. J. Funct. Anal. 250(2), 426–441 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bourdon, P.S., Shapiro, J.H.: Cyclic phenomena for composition operators. Mem. Am. Math. Soc. 596, 125 (1997)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Birkhoff, G.D.: Démonstration d’un théorème élémentaire sur les fonctions entières. CR Acad. Sci. Paris 189(14), 473–475 (1929)zbMATHGoogle Scholar
  5. 5.
    Colonna, F., Martínez-Avendaño, R.A.: Hypercyclicity of composition operators on Banach spaces of analytic functions. Complex Anal. Oper. Theory 12(1), 305–323 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  7. 7.
    De La Rosa, M., Read, C.: A hypercyclic operator whose direct sum is not hypercyclic. J. Operator Theory 61, 369–380 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Duren, P.L.: Theory of \(H^p\) Spaces. Courier Corporation, Chelmsford (2000)Google Scholar
  9. 9.
    Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Springer, London (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kitai, C.: Invariant Closed Sets for Linear Operators. University of Toronto, Thesis (1982)Google Scholar
  11. 11.
    Liang, Y.-X., Zhou, Z.-H.: Hypercyclic composition operators on the little Bloch space and the Besov spaces. Indag. Math. 29(3), 986–996 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    MacLane, G.R.: Sequences of derivatives and normal families. J. Anal. Math. 2(1), 72–87 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rolewicz, S.: On orbits of elements. Studia Math. 32(1), 17–22 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Springer, New York (2005)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of ScienceCivil Aviation University University of ChinaTianjinPeople’s Republic of China
  2. 2.School of MathematicsTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations