Advertisement

A Trudinger–Moser inequality for a conical metric in the unit ball

  • Yunyan YangEmail author
  • Xiaobao Zhu
Article
  • 6 Downloads

Abstract

In this note, we prove a Trudinger–Moser inequality for a conical metric in the unit ball. Precisely, let \({\mathbb {B}}\) be the unit ball in \({\mathbb {R}}^N\) \((N\ge 2)\), \(p>1\), \(g=|x|^{\frac{2p}{N}\beta }(dx_1^2+\cdots +dx_N^2)\) be a conical metric on \({\mathbb {B}}\), and \(\lambda _p({\mathbb {B}})=\inf \left\{ \intop _{\mathbb {B}}|\nabla u|^Ndx: u\in W_0^{1,N}({\mathbb {B}}),\intop _{\mathbb {B}}|u|^pdx=1\right\} \). We prove that for any \(\beta \ge 0\) and \(\alpha <(1+\frac{p}{N}\beta )^{N-1+\frac{N}{p}}\lambda _p({\mathbb {B}})\), there exists a constant C such that for all radially symmetric functions \(u\in W_0^{1,N}({\mathbb {B}})\) with \(\intop _{\mathbb {B}}|\nabla u|^Ndx-\alpha (\intop _{\mathbb {B}}|u|^p|x|^{p\beta }dx)^{N/p}\le 1\), there holds
$$\begin{aligned} \intop _{\mathbb {B}}e^{\alpha _N(1+\frac{p}{N}\beta )|u|^{\frac{N}{N-1}}}|x|^{p\beta }dx\le C, \end{aligned}$$
where \(|x|^{p\beta }dx=dv_g\), \(\alpha _N=N\omega _{N-1}^{1/(N-1)}\), \(\omega _{N-1}\) is the area of the unit sphere in \({\mathbb {R}}^N\); moreover, extremal functions for such inequalities exist. The case \(p=N\), \(-1<\beta <0\), and \(\alpha =0\) was considered by Adimurthi-Sandeep (Nonlinear Differ Equ Appl 13:585–603, 2007), while the case \(p=N=2\), \(\beta \ge 0\), and \(\alpha =0\), was studied by de Figueiredo (Proc Am Math Soc 144:3369–3380, 2016).

Keywords

Trudinger–Moser inequality Blow-up analysis Conical metric 

Mathematics Subject Classification

35J15 46E35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is partly supported by the National Science Foundation of China (Grant Nos. 11471014, 11401575 and 11761131002).

References

  1. 1.
    Adimurthi-Sandeep, K.: A singular Moser–Trudinger embedding and its applications. Nonlinear Differ. Equ. Appl. 13, 585–603 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adimurthi-Yang, Y.: An interpolation of Hardy inequality and Trudinger–Moser inequality in \({\mathbb{R}}^N\) and its applications. Int. Math. Res. Notices 13, 2394–2426 (2010)zbMATHGoogle Scholar
  3. 3.
    Bonheure, D., Serra, E., Tarallo, M.: Symmetry of extremal functions in Moser–Trudinger inequalities and a Hénon type problem in dimension two. Adv. Differ. Equ. 13, 105–138 (2008)zbMATHGoogle Scholar
  4. 4.
    Calanchi, M., Terraneo, E.: Non-radial maximizers for functionals with exponential non-linearity in \({\mathbb{R}}^2\). Adv. Nonlinear Stud. 5, 337–350 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carleson, L., Chang, A.: On the existence of an extremal function for an inequality of Moser. J. Bull. Sci. Math. 110, 113–127 (1986)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Csato, G., Roy, P.: Extremal functions for the singular Moser–Trudinger inequality in \(2\) dimensions. Calc. Var. 54, 2341–2366 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    de Figueiredo, D.G., dos Santos, E.M., Miyagaki, O.H.: Sobolev spaces of symmetric functions and applications. J. Funct. Anal. 261, 3735–3770 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    de Figueiredo, D.G., do Ó, J.M., dos Santos, E.M.: Trudinger–Moser inequalities involving fast growth and weights with strong vanishing at zero. Proc. Am. Math. Soc. 144, 3369–3380 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ding, W., Jost, J., Li, J., Wang, G.: The differential equation \(\Delta u=8\pi -8\pi he^u\) on a compact Riemann surface. Asian J. Math. 1, 230–248 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    do Ó, J.M., de Souza, M.: A sharp inequality of Trudinger–Moser type and extremal functions in \(H^{1,n}({\mathbb{R}}^n)\). J. Differ. Equ. 258, 4062–4101 (2015)CrossRefGoogle Scholar
  11. 11.
    do Ó, J.M., de Souza, M.: Trudinger–Moser inequality on the whole plane and extremal functions. Commun. Contemp. Math. 18, 1550054 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Flucher, M.: Extremal functions for Trudinger–Moser inequality in 2 dimensions. Comment. Math. Helv. 67, 471–497 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Iula, S., Mancini, G.: Extremal functions for singular Moser–Trudinger embeddings. Nonlinear Anal. 156, 215–248 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kichenassamy, S., Veron, L.: Singular solution of the \(p\)-Laplace equation. Math. Ann. 275, 599–615 (1986)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, X.: An improved singular Trudinger–Moser inequality in \({\mathbb{R}}^N\) and its extremal functions. J. Math. Anal. Appl. 462, 1109–1129 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, X., Yang, Y.: Extremal functions for singular Trudinger–Moser inequalities in the entire Euclidean space. J. Differ. Equ. 264, 4901–4943 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, Y.: Moser–Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equ. 14, 163–192 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Li, Y.: The existence of the extremal function of Moser–Trudinger inequality on compact Riemannian manifolds. Sci. China A 48, 618–648 (2005)CrossRefGoogle Scholar
  19. 19.
    Li, Y., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R}}^N\). Indiana Univ. Math. J. 57, 451–480 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lieberman, G.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lin, K.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations, the limit case, part I. Rev. Mat. Iberoam. 1, 145–201 (1985)CrossRefGoogle Scholar
  23. 23.
    Lu, G., Yang, Y.: The sharp constant and extremal functions for Moser–Trudinger inequalities involving \(L^{p}\) norms. Discrete Contin. Dyn. Syst. 25, 963–979 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1091 (1971)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nguyen, V.: Improved Moser–Trudinger inequality for functions with mean value zero in \({\mathbb{R}}^n\) and its extremal functions. Nonlinear Anal. 163, 127–145 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nguyen, V.: Improved Moser-Trudinger inequality of Tintarev type in dimension \(n\) and the existence of its extremal functions. Ann. Glob. Anal. Geom. 54(2), 237–256 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ni, W.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 31, 801–807 (1982)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Peetre, J.: Espaces d’interpolation et theoreme de Soboleff. Ann. Inst. Fourier (Grenoble) 16, 279–317 (1966)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pohozaev, S.: The Sobolev embedding in the special case \(pl=n\). In: Proceedings of the Technical Scientific Conference on Advances of Scientific Reseach 1964–1965, Mathematics sections, Moscov, pp. 158–170. Energet. Inst., Moscow (1965)Google Scholar
  30. 30.
    Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Smets, D., Willem, M., Su, J.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4, 467–480 (2002)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tolksdorf, P.: Regularity for a more general class of qusilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)CrossRefGoogle Scholar
  33. 33.
    Trudinger, N.: On embeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yang, Y.: A sharp form of Moser–Trudinger inequality in high dimension. J. Funct. Anal. 239, 100–126 (2006)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yang, Y.: Corrigendum to: A sharp form of Moser–Trudinger inequality in high dimension. J. Funct. Anal. 242, 669–671 (2007)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Yang, Y.: A sharp form of the Moser–Trudinger inequality on a compact Riemannian surface. Trans. Am. Math. Soc. 359, 5761–5776 (2007)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Yang, Y.: Extremal functions for Trudinger–Moser inequalities of Adimurthi–Druet type in dimension two. J. Differ. Equ. 258, 3161–3193 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yang, Y., Zhu, X.: Blow-up analysis concerning singular Trudinger–Moser inequalities in dimension two. J. Funct. Anal. 272, 3347–3374 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yudovich, V.: Some estimates connected with integral operators and with solutions of elliptic equations. Sov. Math. Docl. 2, 746–749 (1961)zbMATHGoogle Scholar
  40. 40.
    Yuan, A., Zhu, X.: An improved singular Trudinger–Moser inequality in unit ball. J. Math. Anal. Appl. 435, 244–252 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhu, J.: Improved Moser–Trudinger inequality involving \(L^p\) norm in \(n\) dimensions. Adv. Nonlinear Stud. 14, 273–293 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MathematicsRenmin University of ChinaBeijingPeople’s Republic of China

Personalised recommendations