Archiv der Mathematik

, Volume 112, Issue 2, pp 161–168 | Cite as

Über die Funktionen des Irrationalitätsmaßes für zwei irrationale Zahlen

  • Nikolay MoshchevitinEmail author


For real \(\xi \) we consider the irrationality measure function \(\psi _\xi (t) = \min _{1\leqslant q \leqslant t, \, q\in \mathbb {Z}} ||q\xi ||\). We prove that in the case \(\alpha \pm \beta \not \in \mathbb {Z}\) there exist arbitrary large values of t with \(|\psi _\alpha (t) -\psi _\beta (t)| \geqslant \left( \sqrt{\frac{\sqrt{5}+1}{2}}-1\right) \min (\psi _\alpha (t), \psi _\beta (t))\). This result is optimal.


Irrationality measure function Continued fractions 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dubickas, A.: On rational approximations to two irrational numbers. J. Number Theory 177, 43–59 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kan, I.D., Moshchevitin, N.G.: Approximations to two real numbers. Unif. Distrib. Theory 5(2), 79–86 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Perron, O.: Die Lehre von den Kettenbrüchen. B.G. Teubner, Leipzig und Berlin (1929)zbMATHGoogle Scholar
  4. 4.
    Shatskov, D.O.: On the mean value of the measure of irrationality of real numbers. Math. Notes 98(2), 109–123 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Schmidt, W.M.: Diophantine Approximations. Lecture Notes Mathematics, vol. 785. Springer, Berlin (1980)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Steklow-Institut für Mathematik der Russischen Akademie der WissenschaftenGubkina 8, MoskauRussia

Personalised recommendations