Über die Funktionen des Irrationalitätsmaßes für zwei irrationale Zahlen
Article
First Online:
- 13 Downloads
Abstract
For real \(\xi \) we consider the irrationality measure function \(\psi _\xi (t) = \min _{1\leqslant q \leqslant t, \, q\in \mathbb {Z}} ||q\xi ||\). We prove that in the case \(\alpha \pm \beta \not \in \mathbb {Z}\) there exist arbitrary large values of t with \(|\psi _\alpha (t) -\psi _\beta (t)| \geqslant \left( \sqrt{\frac{\sqrt{5}+1}{2}}-1\right) \min (\psi _\alpha (t), \psi _\beta (t))\). This result is optimal.
Keywords
Irrationality measure function Continued fractionsMathematics Subject Classification
11J70Preview
Unable to display preview. Download preview PDF.
References
- 1.Dubickas, A.: On rational approximations to two irrational numbers. J. Number Theory 177, 43–59 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Kan, I.D., Moshchevitin, N.G.: Approximations to two real numbers. Unif. Distrib. Theory 5(2), 79–86 (2010)MathSciNetzbMATHGoogle Scholar
- 3.Perron, O.: Die Lehre von den Kettenbrüchen. B.G. Teubner, Leipzig und Berlin (1929)zbMATHGoogle Scholar
- 4.Shatskov, D.O.: On the mean value of the measure of irrationality of real numbers. Math. Notes 98(2), 109–123 (2015)MathSciNetzbMATHGoogle Scholar
- 5.Schmidt, W.M.: Diophantine Approximations. Lecture Notes Mathematics, vol. 785. Springer, Berlin (1980)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2018