Archiv der Mathematik

, Volume 113, Issue 1, pp 63–72 | Cite as

Plurisubharmonic geodesics and interpolating sets

  • Dario Cordero-Erausquin
  • Alexander RashkovskiiEmail author


We apply a notion of geodesics of plurisubharmonic functions to interpolation of compact subsets of \({\mathbb {C}}^n\). Namely, two non-pluripolar, polynomially closed, compact subsets of \({\mathbb {C}}^n\) are interpolated as level sets \(L_t=\{z: u_t(z)=-1\}\) for the geodesic \(u_t\) between their relative extremal functions with respect to any ambient bounded domain. The sets \(L_t\) are described in terms of certain holomorphic hulls. In the toric case, it is shown that the relative Monge–Ampère capacities of \(L_t\) satisfy a dual Brunn–Minkowski inequality.


Complex interpolation Plurisubharmonic geodesic Relative extremal function Monge–Ampère capacity Brunn–Minkowski inequality 

Mathematics Subject Classification

Primary 32E30 Secondary 32U05 32U15 32U20 52A20 52A38 52A40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Part of the work was done while the second named author was visiting Université Pierre et Marie Curie in March 2017; he thanks Institut de Mathématiques de Jussieu for the hospitality. The authors are grateful to the anonymous referee for careful reading of the text.


  1. 1.
    Aytuna, A., Rashkovskii, A., Zahariuta, V.: Widths asymptotics for a pair of Reinhardt domains. Ann. Polon. Math. 78, 31–38 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)CrossRefzbMATHGoogle Scholar
  3. 3.
    Berman, R.J., Berndtsson, B.: Moser–Trudinger type inequalities for complex Monge–Ampère operators and Aubin’s “hypothèse fondamentale”. arXiv:1109.1263
  4. 4.
    Borell, C.: Capacitary inequalities of the Brunn–Minkowski type. Math. Ann. 263(2), 179–184 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borell, C.: Hitting probabilities of killed Brownian motion: a study on geometric regularity. Ann. Sci. École Norm. Sup. (4) 17(3), 451–467 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Calderón, A.-P.: Intermediate spaces and interpolation, the complex method. Studia Math. 24, 113–190 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cordero-Erausquin, D.: Santaló’s inequality on \({\mathbb{C}}^{n}\) by complex interpolation. C. R. Acad. Sci. Paris Ser. I 334, 767–772 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cordero-Erausquin, D., Klartag, B.: Interpolations, convexity and geometric inequalities. In: Klartag, B., Mendelson, S., Milman, V.D. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 2050, pp. 151–168. Springer, Berlin (2012)CrossRefGoogle Scholar
  9. 9.
    Guan, D.: On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles. Math. Res. Lett. 6(5–6), 547–555 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Guedj, V. (ed.): Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics. Lecture Notes in Math., vol. 2038. Springer, Berlin (2012)zbMATHGoogle Scholar
  11. 11.
    Khovanski, A., Timorin, V.: On the theory of coconvex bodies. Discrete Comput. Geom. 52(4), 806–823 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Klimek, M.: Pluripotential Theory. Oxford University Press, London (1991)zbMATHGoogle Scholar
  13. 13.
    Oka, K.: Note sur les familles de finctions analytiques multiformes etc. J. Sci. Hiroshima Univ. Ser. A 4, 93–98 (1943)zbMATHGoogle Scholar
  14. 14.
    Poletsky, E.A.: Jensen measures and analytic multifunctions. Ark. Mat. 42(2), 335–352 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Range, M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, Berlin (1986)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ransford, T.: Computation of logarithmic capacity. Comput. Methods Funct. Theory 10(2), 555–578 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rashkovskii, A.: Local geodesics for plurisubharmonic functions. Math. Z. 287, 73–83 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rashkovskii, A.: Copolar convexity. Ann. Polon. Math. 120(1), 83–95 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Słodkowski, Z.: Analytic set-valued functions and spectra. Math. Ann. 256(3), 363–386 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Słodkowski, Z.: Polynomial hulls with convex sections and interpolating spaces. Proc. Am. Math. Soc. 96(2), 255–260 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Słodkowski, Z.: Complex interpolation of normed and quasinormed spaces in several dimensions. I. Trans. Am. Math. Soc. 308(2), 685–711 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Słodkowski, Z.: Polynomial hulls with convex fibers and complex geodesics. J. Funct. Anal. 94(1), 156–176 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dario Cordero-Erausquin
    • 1
  • Alexander Rashkovskii
    • 2
    Email author
  1. 1.Institut de Mathématiques de JussieuSorbonne UniversitéParis Cedex 05France
  2. 2.Tek/NatUniversity of StavangerStavangerNorway

Personalised recommendations