Archiv der Mathematik

, Volume 110, Issue 5, pp 455–458 | Cite as

Intersection forms of almost-flat 4-manifolds

Article
  • 17 Downloads

Abstract

We calculate intersection forms of all 4-dimensional almost-flat manifolds.

Keywords

Intersection form Almost-flat manifold Spin structure 

Mathematics Subject Classification

57R19 57M05 20H15 22E25 53C25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank K. Dekimpe, R. Lutowski, M. Mroczkowski and N. Petrosyan for some useful comments.

References

  1. 1.
    Ch. Bohr, On the signatures of even \(4\)-manifolds, Math. Proc. Cambridge 132 (2002), 453–469.Google Scholar
  2. 2.
    K. Dekimpe, Almost-Bieberbach Groups: Affine and Polynomial Structures, Lecture Notes in Mathematics, 1639, Springer, Berlin, 1996.Google Scholar
  3. 3.
    S. Donaldson, An application of gauge theory to four dimensional topology, J. Differential Geom. 18 (1983), 279–315.Google Scholar
  4. 4.
    S. Donaldson and P. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, Oxford, 1991.Google Scholar
  5. 5.
    The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12, 2008, (http://www.gap-system.org).
  6. 6.
    A. Ga̧sior, N. Petrosyan, and A. Szczepański, Spin structures on almost-flat manifolds, Algebr. Geom. Topol. 16 (2016), 783–796.Google Scholar
  7. 7.
    J.-H. Kim, The \(\frac{10}{8}\)-conjecture and equivariant \(e_{C}\)-invariants, Math. Ann. 329 (2004), 31–47.Google Scholar
  8. 8.
    R. Lutowski, N. Petrosyan, and A. Szczepański, Classification of spin structures on \(4\)-dimensional almost-flat manifold, accepted to Mathematika, arXiv:1701.03920.
  9. 9.
    J. W. Milnor and J. D. Stasheff, Charactersistic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, NJ and University of Tokyo Press, Tokyo, 1974.Google Scholar
  10. 10.
    B. Putrycz and A. Szczepański, Existence of spin structures on flat manifolds, Adv. Geometry 10 (2010), 323–332MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    J. Ratcliffe and S. Tschantz, Abelianization of space groups, Acta Crystallogr. 65 (2009), 18–27MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. Scorpan, The wild world of \(4\)-manifolds, American Mathematical Society, Providence, RI, 2005.MATHGoogle Scholar
  13. 13.
    A. Szczepański, Geometry of crystallographic groups, In: Algebra and Discrete Mathematics, 4, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of GdańskGdańskPoland

Personalised recommendations