Algebra universalis

, 80:43

# Further thoughts on the ring $${\mathcal {R}}_c (L)$$ in frames

• Ali Akbar Estaji
• Maryam Robat Sarpoushi
• Mahtab Elyasi
Article

## Abstract

Let C(X) denote the ring of all real-valued continuous functions on a topological space X and $${\mathcal {R}} (L)$$ be as the pointfree topology version of C(X), i.e., the ring of real-valued continuous functions on a frame L. The ring $${\mathcal {R}}_c (L)$$ is introduced as a sub-f-ring of $${\mathcal {R}} ( L)$$ as a pointfree analogue to the subring $$C_c(X)$$ of C(X) consisting of elements with the countable image. In this paper, we will study the concept of pointfree countable image in a way which will enable us to study the ring $${\mathcal {R}}_c (L)$$. In order to do so we introduce the set $$R_{\alpha } := \{ r \in {\mathbb {R}} : {{\,\mathrm{coz}\,}}(\alpha - \mathbf{r}) \not = \top \}$$ for every $$\alpha \in {\mathcal {R}} (L)$$. We prove that $$R_{\alpha }$$ is a countable subset of $${\mathbb {R}}$$ for every $$\alpha \in {\mathcal {R}}_c (L)$$. Next, we show that if L is a compact frame, then $$R_{\alpha }$$ is a finite subset of $${\mathbb {R}}$$ for every $$\alpha \in {\mathcal {R}}_c (L)$$. Also, we study the result which says that for any topological space X there is a zero-dimensional space Y which is a continuous image of X and $$C_c(X) \cong C_c(Y )$$ in pointfree topology. Finally, we prove that, for some frame L, the ring $${\mathcal {R}}_c (L)$$ may not be isomorphic to $${\mathcal {R}} (M)$$, for any given frame M.

## Keywords

Zero-dimensional frame Compact frame Connected frame Ring of real-valued continuous functions Countable image

## Mathematics Subject Classification

06D22 54C05 54C30

## Notes

### Acknowledgements

We appreciate the referee for his thorough comments and for taking the time and effort to review our manuscript.

## References

1. 1.
Azarpanah, F., Karamzadeh, O.A.S.: Algebraic characterization of some disconnected spaces. Ital. J. Pure Appl. Math. 12, 155–168 (2002)
2. 2.
Azarpanah, F., Karamzadeh, O.A.S., Keshtkar, Z., Olfati, A.R.: On maximal ideals of $$C_c( X )$$ and uniformity its localizations. Rocky Mt. J. Math. 48(2), 345–384 (2018)
3. 3.
Azarpanah, F., Karamzadeh, O.A.S., Rahmati, S.: $$C(X)$$ Vs. $$C(X)$$ modulo its socle. Colloq. Math. 111(2), 315–336 (2008)
4. 4.
Ball, R.N., Hager, A.W.: On the localic yoshida representation of an archimedean lattice ordered group with weak order unit. J. Pure Appl. Algebra 70(1), 17–43 (1991)
5. 5.
Ball, R.N., Walters-Wayland, J.: $$C-$$ and $$C^*-$$ quotients on pointfree topology. Dissertations Mathematicae (Rozprawy Mat) 412, 1–62 (2002)
6. 6.
Banaschewski, B.: The real numbers in pointfree topology. Textos de Mathematica (Series B), University of Coimbra, Departmento de Mathematica. Coimbra 12, 1–94 (1997)Google Scholar
7. 7.
Banaschewski, B.: Pointfree Topology and the Spectra of $$f$$-Rings. Ordered Algebraic Structures, (Curacao 1995), vol. 19, pp. 123–148. Kluwer Academic Publishers, Dordrecht (1997)
8. 8.
Banaschewski, B.: On the pointfree counterpart of the local definition of classical continuous maps. Categ. Gen. Algebr. Struct. Appl. 8(1), 1–8 (2018)
9. 9.
Banaschewski, B., Gilmour, C.R.A.: Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolinae 37(3), 577–587 (1996)
10. 10.
Bhattacharjee, P., Knox, M.L., McGovern, W.W.: The classical ring of quotients of $$C_c(X)$$. Appl. Gen. Topol. 15(2), 147–154 (2014)
11. 11.
Dowker, C.H., Papert, D.: On Urysohn’s lemma. In: Proceedings of the Second Prague Topology Symposium, 1966, pp. 111–114. Academia Publishing House of the Czechoslovak Academy of Sciences, Praha (1967)
12. 12.
Dube, T.: Concerning $$P$$-frames, essential $$P$$-frames, and strongly zero-dimensional frames. Algebra Univ. 61, 115–138 (2009)
13. 13.
Estaji, A.A., Abedi, M.: On injectivity of the ring of real-valued continuous functions on a frame. Bull. Belg. Math. Soc. Simon Stevin 25(3), 467–480 (2018)
14. 14.
Estaji, A.A., Karamzadeh, O.A.S.: On $$C(X)$$ modulo its socle. Commun. Algebra 31(4), 1561–1571 (2003)
15. 15.
Estaji, A.A., Karimi-Feizabadi, A., Emamverdi, B.: Representation of real Riesz maps on a strong $$f$$-ring by prime elements of a frame. Algebra Univ. 79, 1–14 (2018)
16. 16.
Estaji, A.A., Karimi-Feizabadi, A., Robat-Sarpoushi, M.: $$z_c$$-ideals and prime ideals in the ring $${\cal{R}}_c (L)$$. Filomat 32(19), 6741–6752 (2018)
17. 17.
Estaji, A. A., Robat-Sarpoushi, M.: Pointfree version of image of continuous functions with finite image. In: 25th Iranian Algebra Seminar, pp. 89–92. Hakim Sabzevari University (2016)Google Scholar
18. 18.
Estaji, A.A., Robat-Sarpoushi, M.: On $$CP$$-frames (submitted)Google Scholar
19. 19.
Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M.: On the functionally countable subalgebra of $$C(X)$$. Rend. Sem. Mat. Univ. Padova 129, 47–69 (2013)
20. 20.
Ghadermazi, M., Karamzadeh, O.A.S., Namdari, M.: $$C(X)$$ versus its functionally countable subalgebra. Bull. Iran. Math. Soc. (BIMS) 45, 173–187 (2019)Google Scholar
21. 21.
Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer, Berlin (1976)
22. 22.
Hager, A.: Some nearly fine uniform spaces. Proc. Lond. Math. Soc. 28, 517–546 (1974)
23. 23.
Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)
24. 24.
Karamzadeh, O.A.S., Keshtkar, Z.: On $$c$$-realcompact spaces. Quaest. Math. 41(8), 1135–1167 (2018)
25. 25.
Karamzadeh, O.A.S., Namdari, M., Soltanpour, S.: On the locally functionally countable subalgebra of $$C(X)$$. Appl. Gen. Topol. 16(2), 183–207 (2015)
26. 26.
Karimi-Feizabadi, A., Estaji, A.A., Emamverdi, B.: $${\cal{R}}L$$-valued $$f$$-rings homomorphism and lattice-valued maps. Categ. Gen. Algebra. Struct. Appl. 7, 141–163 (2016)
27. 27.
Karimi-Feizabadi, A., Estaji, A.A., Robat-Sarpoushi, M.: Pointfree version of image of real-valued continuous functions. Categ. Gen. Algebra. Struct. Appl. 9(1), 59–75 (2018)
28. 28.
Mehri, R., Mohamadian, R.: On the locally countable subalgebra of $$C(X)$$ whose local domain is cocountable. Hacet. J. Math. Stat. 46(6), 1053–1068 (2017)
29. 29.
Namdari, M., Veisi, A.: Rings of quotients of the subalgebra of $$C(X)$$ consisting of functions with countable image. Int. Math. Forum 7(12), 561–571 (2012)
30. 30.
Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics. Birkhäuser/Springer, Basel AG, Basel (2012)

© Springer Nature Switzerland AG 2019

## Authors and Affiliations

• Ali Akbar Estaji
• 1
Email author
• Maryam Robat Sarpoushi
• 1
• Mahtab Elyasi
• 1
1. 1.Faculty of Mathematics and Computer SciencesHakim Sabzevari UniversitySabzevarIran