Algebra universalis

, 80:18 | Cite as

On the primeness of locally finite idempotent 3-permutability

  • Alberto ChiccoEmail author


In this paper, we show that for any finite idempotent non-congruence 3-permutable algebra \(\mathbf {A}\), it is always the case that \({{\,\mathrm{HSP}\,}}(\mathbf {A})\) contains an algebra carrying a binary reflexive compatible relation having a certain shape, which we have called a 2-dimensional special Hagemann relation with middle part. As a result of this property, we are able to show that the join of any pair of locally finite idempotent non-congruence 3-permutable varieties in the lattice of interpretability types, fails to be congruence 3-permutable, yielding a primeness argument for this specific setting.


Congruence 3-permutable variety Idempotent Locally finite Maltsev condition Prime Special Hagemann relation 

Mathematics Subject Classification

08B05 08A30 03C05 



  1. 1.
    Barto, L., Opršal, J., Pinsker, M.: The wonderland of reflections. Israel J. Math. 223(1), 363–398 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bentz, W., Sequeira, L.: Taylor’s modularity conjecture holds for linear idempotent varieties. Algebra Univ. 71(2), 101–107 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chicco, A.: Prime Maltsev conditions and congruence n-permutability. PhD thesis, McMaster University, Ontario, Canada, (2018)Google Scholar
  4. 4.
    Chicco, A.: Special Hagemann relations and congruence n-permutable varieties. Preprint (2018)Google Scholar
  5. 5.
    Freese, R., Kiss, E., Valeriote, M.: Universal Algebra Calculator. (2011)
  6. 6.
    Garcia, O. C., Taylor, W.: The lattice of interpretability types of varieties, volume 50 of Memoirs of the American Mathematical Society Series. American Mathematical Society, (1984)Google Scholar
  7. 7.
    Hagemann, J., Mitschke, A.: On n-permutable congruences. Algebra Univ. 3(1), 8–12 (1973)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kearnes, K.A.: Congruence permutable and congruence 3-permutable locally finite varieties. J. Algebra 156(1), 36–49 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    McKenzie, R., McNulty, G., Taylor, W.: Algebras, Lattices, Varieties, volume 1. Wadsworth and Brooks Cole, (1987)Google Scholar
  10. 10.
    Neumann, W.D.: On Malcev conditions. J. Aust. Math. Soc. 17(3), 376–384 (1974)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Opršal, J.: Taylor’s modularity conjecture and related problems for idempotent varieties. Order, pages 1–28, (2016)Google Scholar
  12. 12.
    Schmidt, E.T.: Kongruenzrelationen algebraischer strukturen. Math. Forschungsberich. 1969, 25 (1969)zbMATHGoogle Scholar
  13. 13.
    Taylor, W.: The fine spectrum of a variety. Algebra Univ. 5(1), 263–303 (1975)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tschantz, S.: Congruence permutability is join prime. unpublished, pp. 1–70, (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada

Personalised recommendations