Algebra universalis

, 80:21 | Cite as

Small inductive dimension and universality on frames

  • Dimitrios N. GeorgiouEmail author
  • Stavros D. Iliadis
  • Athanasios C. Megaritis
  • Fotini Sereti


In this paper we prove that for a fixed integer or an ordinal \(\alpha \) and a fixed infinite cardinal \(\tau \) the class of all regular frames of weight less than or equal to \(\tau \) with small inductive dimension less than or equal to \(\alpha \) is saturated and therefore, in this class of frames there exist universal elements.


Small inductive dimension of frames Universal frame Saturated class of frames 

Mathematics Subject Classification

06A06 06D22 06F30 54H12 54F05 



The authors would like to thank the referee for the careful reading of the paper and the useful comments. The fourth author of the paper F. Sereti (with scholarship code 2547) would like to thank the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) for the financial support of this study.


  1. 1.
    Brijall, D., Baboolal, D.: Some aspects of dimension theory of frames. Indian J. Pure Appl. Math. 39(5), 375–402 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Brijall, D., Baboolal, D.: The Katětov-Morita theorem for the dimension of metric frames. Indian J. Pure. Appl. Math. 41(3), 535–553 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Charalambous, M.G.: Dimension theory for \(\sigma \)-frames. J. Lond. Math. Soc. 8(2), 149–160 (1974)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Charalambous, M.G.: A new covering dimension function for uniform spaces. J. Lond. Math. Soc. 11(2), 137–143 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dube, T., Iliadis, S., van Mill, J., Naidoo, I.: Universal frames. Topol. Appl. 160, 2454–2464 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Español, L., Gutiérrez García, J., Kubiak, T.: Separating families of locale maps and localic embeddings. Algebra Univers. 67, 105–112 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gevorgyan, P.S., Iliadis, S.D., Sadovnichy, Yu.V Universality on frames. Topol. Appl. 220, 173–188 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Iliadis, S.D.: Universal regular and completely regular frames. Topol. Appl. 179, 99–110 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Iliadis, S.D.: Dimension and universality on frames. Topol. Appl. 201, 92–109 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Isbell, J.R.: Graduation and dimension in locales. Aspects of topology. London Math. Soc. Lecture Note Ser., pp. 195–210. Cambridge Univ. Press, Cambridge (1985)Google Scholar
  12. 12.
    Sancho de Salas, Juan B., Sancho de Salas, M.Teresa: Dimension of distributive lattices and universal spaces. Topol. Appl. 42, 25–36 (1991)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vinokurov, V.G.: A lattice method of defining dimension. Dokl. Akad. Nauk SSSR, Tom 168(3), 663–666 (1966). (Russian) MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dimitrios N. Georgiou
    • 1
    Email author
  • Stavros D. Iliadis
    • 2
  • Athanasios C. Megaritis
    • 3
  • Fotini Sereti
    • 1
  1. 1.Department of MathematicsUniversity of PatrasPatrasGreece
  2. 2.Department of General Topology and GeometryMoscow State University (M. V. Lomonosov)MoscowRussia
  3. 3.Department of Computer EngineeringTechnological Educational Institute of PeloponneseSpartaGreece

Personalised recommendations