Advertisement

Algebra universalis

, 80:15 | Cite as

On representation of finite lattices

  • A. V. Kravchenko
  • A. M. Nurakunov
  • M. V. SchwidefskyEmail author
Article
  • 15 Downloads
Part of the following topical collections:
  1. Algebras and Lattices in Hawaii

Abstract

In an earlier article, the authors found sufficient conditions for complexity of the lattice of subquasivarieties of a quasivariety. In the present article, we prove that these conditions allow us to represent finite lattices as relative congruence lattices and relative variety lattices in a uniform way. Some applications are presented.

Keywords

Congruence Quasivariety Variety 

Mathematics Subject Classification

06B15 03C05 08A30 08C15 05C15 

Notes

Acknowledgements

We thank the referee for having thoroughly read the paper, for his comments and suggestions which helped to improve our paper.

References

  1. 1.
    Adams, M.E., Dziobiak, W.: \(Q\)-universal quasivarieties of algebras. Proc. Am. Math. Soc. 120, 1053–1059 (1994)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Berman, J.: Congruence Lattices of Finite Universal Algebras. Ph.D. Thesis, University of Washington (1970). http://db.tt/mXUVTzSr
  3. 3.
    Dziobiak, W.: Selected topics in quasivarieties of algebraic systems (1997, unpublished manuscript)Google Scholar
  4. 4.
    Freese, R.: Projective geometries as projective modular lattices. Trans. Am. Math. Soc. 251, 329–342 (1979)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Freese, R., Lampe, W.A., Taylor, W.: Congruence lattices of algebras of fixed similarity type. I. Pac. J. Math. 82, 59–68 (1979)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Freese, R., Nation, J.B.: Congruence lattices of semilattices. Pac. J. Math. 49, 51–58 (1973)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gorbunov, V.A.: Algebraic Theory of Quasivarieties Nauchnaya Kniga, Novosibirsk (1999) (Russian). Plenum, New York (1998) (English translation) Google Scholar
  8. 8.
    Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag, Basel (1998)zbMATHGoogle Scholar
  9. 9.
    Grätzer, G., Schmidt, E.T.: Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24, 34–59 (1963)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hyndman, J., Nation, J.B.: The Lattice of Subquasivarieties of a Locally Finite Quasivariety. Books in Mathematics. Canadian Mathematical Society, Ottawa (2018)CrossRefGoogle Scholar
  11. 11.
    Hyndman, J., Nation, J.B., Nishida, J.: Congruence lattices of semilattices with operators. Stud. Log. 104, 305–316 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kravchenko, A.V., Nurakunov, A.M., Schwidefsky, M.V.: On the structure of quasivariety lattices I. Independent axiomatizability. Algebra Log. 57, 640–667 (2018)Google Scholar
  13. 13.
    Kravchenko, A.V., Nurakunov, A.M., Schwidefsky, M.V.: On the structure of quasivariety lattices. II. Undecidable problems. Algebra Log. (Accepted) Google Scholar
  14. 14.
    Lampe, W.A.: On the congruence lattice characterization theorem. Trans. Am. Math. Soc. 182, 43–60 (1973)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lampe, W.A.: Congruence lattices of algebras of fixed similarity type II. Pac. J. Math. 103, 475–508 (1982)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lampe, W.A.: A property of the lattice of equational theories. Algebra Univ. 23, 61–69 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lampe, W.A.: A perspective on algebraic representations of lattices. Algebra Univ. 31, 337–364 (1994)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lampe, W.A.: Results and problems on congruence lattice representations. Algebra Univ. 55, 127–135 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lucchini, A.: Representation of certain lattices as intervals in subgroup lattices. J. Algebra 164, 85–90 (1994)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Malcev, A.I.: Algebraic Systems. Nauka, Moscow (1970) (Russian). English translation: Die Grundlehren der mathematischen Wissenschaften, Band 192. Springer, New York (1973)Google Scholar
  21. 21.
    McKenzie, R.N.: Finite forbidden lattices. In: Freese, R.S., Garcia, O.C. (eds.) Universal algebra and lattice theory. Lecture Notes in Mathematics, vol. 1004, pp. 176–205. Springer, Berlin (1983)Google Scholar
  22. 22.
    McNulty, G.F.: A juggler’s dozen of easy problems. Algebra Univ. 74, 17–34 (2015)CrossRefGoogle Scholar
  23. 23.
    Nation, J.B.: Lattices of theories in languages without equality. Notre Dame J. Form. Log. 54, 167–175 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Nurakunov, A.M.: Finite lattices as lattices of relative congruences of finite unars and Abelian groups. Algebra Log. 40, 166–169 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nurakunov, A.M.: Finite lattices as relative congruence lattices of finite algebras. Algebra Univ. 57, 207–214 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nurakunov, A.M.: Quasivariety lattices of pointed Abelian groups. Algebra Log. 53, 238–257 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pálfy, P.P., Pudlák, P.: Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups. Algebra Univ. 11, 22–27 (1980)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Schwidefsky, M.V., Zamojska-Dzienio, A.: Lattices of subclasses. Sib. Math. J. 53, 889–905 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schwidefsky, M.V., Zamojska-Dzienio, A.: Lattices of subclasses II. Int. J. Algebra Comput. 24, 1099–1126 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. V. Kravchenko
    • 1
    • 2
    • 3
    • 4
  • A. M. Nurakunov
    • 5
  • M. V. Schwidefsky
    • 1
    • 2
    • 4
    Email author
  1. 1.Sobolev Institute of MathematicsSiberian Branch RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Siberian Institute of Management (Department of the Russian Academy of National Economy and Public Administration under the President of the Russian Federation)NovosibirskRussia
  4. 4.Novosibirsk State Technical UniversityNovosibirskRussia
  5. 5.Institute of Mathematics of the National Academy of SciencesBishkekKyrgyzstan

Personalised recommendations