Algebra universalis

, 80:12 | Cite as

Sticky matroids and Kantor’s Conjecture

  • Winfried Hochstättler
  • Michael WilhelmiEmail author


We prove the equivalence of Kantor’s Conjecture and the Sticky Matroid Conjecture due to Poljak und Turzík.


Matroids Amalgams Embeddings Projective spaces 

Mathematics Subject Classification

05B35 05B25 06C10 51D20 



The authors are greatful to an anonymous referee who carefully read the paper, and whose comments helped to improve its readability.


  1. 1.
    Bachem, A., Kern, W.: On sticky matroids. Discrete Math. 69(1), 11–18 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bonin, J.E.: A note on the sticky matroid conjecture. Ann. Comb. 15(4), 619–624 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Crapo, H.H.: Single-element extensions of matroids. J. Res. Nat. Bur. Standards Sect. B 69B, 55–65 (1965)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kahn, J.: Locally projective-planar lattices which satisfy the bundle theorem. Mathematische Zeitschrift 175(3), 219–247 (1980)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kantor, W.M.: Dimension and embedding theorems for geometric lattices. J. Combin. Theory Ser. A 17, 173–195 (1974)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Metsch, K.: Embedding finite planar spaces into 3-dimensional projective spaces. J. Combin. Theory Ser. A 51(2), 161–168 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Oxley, J.: Matroid Theory, Oxford Graduate Texts in Mathematics, vol. 21, second edn. Oxford University Press, Oxford (2011)Google Scholar
  8. 8.
    Poljak, S., Turzík, D.: A note on sticky matroids. Discrete Math. 42(1), 119–123 (1982)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wille, R.: On incidence geometries of grade \(n\). Tech. rep., TU Darmstadt (1967)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lehrgebiet für Diskrete Mathematik und Optimierung Fakultät für Mathematik und InformatikFernUniversität in HagenHagenGermany

Personalised recommendations