Advertisement

Immunomodulating action of the 3-phenylcoumarin derivative 6,7-dihydroxy-3-[3′,4′-methylenedioxyphenyl]-coumarin in neutrophils from patients with rheumatoid arthritis and in rats with acute joint inflammation

  • Lucinéia Reuse AlbieroEmail author
  • Micássio Fernandes de AndradeEmail author
  • Larissa Fávaro Marchi
  • Ana Paula Landi-Librandi
  • Andréa Silva Garcia de Figueiredo-Rinhel
  • Camila Andressa Carvalho
  • Luciana Mariko Kabeya
  • Renê Donizeti Ribeiro de Oliveira
  • Ana Elisa Caleiro Seixas Azzolini
  • Mônica Tallarico Pupo
  • Flávio da Silva Emery
  • Yara Maria Lucisano-ValimEmail author
Original Research Paper

Abstract

Objective

To examine whether free (3-PD-5free) and/or liposomal (3-PD-5lipo) 6,7-dihydroxy-3-[3′,4′-methylenedioxyphenyl]-coumarin (3-PD-5) (1) modulate the effector functions of neutrophils from patients with rheumatoid arthritis under remission (i-RA) and with active disease (a-RA), in vitro; and (2) exert anti-inflammatory effect in a rat model of zymosan-induced acute joint inflammation.

Methods and results

Incorporation of 3-PD-5 into unilamellar liposomes of soya phosphatidylcholine and cholesterol was efficient (57.5 ± 7.9%) and yielded vesicles with low diameter (133.7 ± 18.4 nm), polydispersity index (0.39 ± 0.06), and zeta potential (− 1.22 ± 0.34 mV). 3-PD-5free (1 µM) and 3-PD-5lipo (3 µM) equally suppressed elastase release and reactive oxygen species generation in neutrophils from healthy subjects and i-RA and a-RA patients, stimulated with immune complexes. 3-PD-5free (20 µM) suppressed the release of neutrophil extracellular traps and chemotaxis in vitro, without clear signs of cytotoxicity. 3-PD-5lipo (1.5 mg/kg, i.p.) diminished joint edema and synovial infiltration of total leukocytes and neutrophils, without changing the synovial levels of TNF-α, IL-1β, and IL-6.

Conclusion

Altogether, the results reported herein indicate that 3-PD-5 is a promising modulator of the early stages of acute joint inflammation that can help to diminish not only excessive neutrophil infiltration in the synovia but also neutrophil activation and its outcomes in RA patients.

Keywords

Neutrophil Rheumatoid arthritis 3-Phenylcoumarin Chemotaxis Inflammation Liposome 

Abbreviations

a-RA

Active rheumatoid arthritis

BTL1

Leukotriene B4 receptor

CL

Chemiluminescence

CXCL8

Interleukin 8

CXCR1

CXCL8 receptor type 1

CXCR2

CXCL8 receptor type 2

DAPI

4′,6-Diamidino-2-phenylindole dihydrochloride

DMSO

Dimethyl sulfoxide

DPI

Diphenyleneiodonium chloride

FITC

Fluorescein isothiocyanate

HBSS

Hank’s balanced saline solution

HBSS-gel

Hank’s balanced saline solution supplemented with gelatin

IC

Immune complex

i-RA

Inactive rheumatoid arthritis

i-IC

Immobilized immune complexes

IL-1β

Interleukin 1β

IL-6

Interleukin 6

LTB4

Leukotriene B4

MFI

Median fluorescence intensity

MPO

Myeloperoxidase

NETs

Neutrophil extracellular traps

OVA

Ovalbumin

PBS

Phosphate-buffered saline

3-PD-5

6,7-Dihydroxy-3-[3′,4′-methylenedioxyphenyl]-coumarin

3-PD-5free

Free form of 3-PD-5

3-PD-5lipo

Liposomal form of 3-PD-5

p-IC

Precipitated immune complexes

p-ICops

Precipitated immune complexes opsonized with human serum

PE

Phycoerythrin

RA

Rheumatoid arthritis

ROS

Reactive oxygen species

TNF-α

Tumor necrosis factor α

Notes

Acknowledgments

The authors thank Dr. Adriana Balbina Paoliello-Paschoalato, Dr. Marcelo Dias Baruffi and Dr. Alexandre Kanashiro for scientific discussions, and Mr. Alcides Silva Pereira and Mrs. Nadir Mazzucato from the School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil, for their helpful technical assistance.

Author contributions

LRA, MFA, LFM, and YMLV conceived the study; LRA, MFA, LFM, and AECS designed the experiments; RDRO selected the patients and determined their clinical parameters; LRA and LFM selected the healthy volunteers; LRA, MFA, CAC, and AECS performed the in vitro experiments; MFA, APLL, ASGFR, and AECS performed the in vivo experiments; LRA, MFA, LFM, LMK, AECS, and YMLV analyzed the data and discussed the results; MTP and FSE synthesized the 3-phenylcoumarin derivative and discussed the results; LRA, MFA, and LMK wrote the manuscript; and YMLV searched for funding and supervised the study. All authors read and approved the final manuscript.

Funding

This study was supported by the Brazilian funding agencies São Paulo Research Foundation (FAPESP, grants 2010/19504-0, 2012/23541-4, 2013/20810-7, and 2013/21331-5) and National Council for Scientific and Technological Development (CNPq, grants 482015/2012-8, 308111/2013-3, and 130209/2015-5).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethics approval and consent to participate

All procedures performed in studies involving human participants complied with the ethical standards established by the Resolution 466/2012 of the Brazilian National Health Council, and with the 1964 Helsinki declaration and its later amendments. The Human Research Ethics Committee from the Ribeirão Preto Medical School Hospital and from the School of Pharmaceutical Sciences of Ribeirão Preto, both at the University of São Paulo, Ribeirão Preto, SP, Brazil, approved the study protocol (CEP/HCRP n. 15038/2015). All the participants signed an informed consent form to participate in this study. All procedures performed in studies involving animals complied with the ethical standards of The Animal Care Committee from the University of São Paulo, Brazil, which approved the study protocol (CEUA n. 15.1.1163.60.0).

Supplementary material

11_2019_1298_MOESM1_ESM.docx (940 kb)
Supplementary file1 (DOCX 939 kb)

References

  1. 1.
    Vermeren S, Karmakar U, Rossi AG. Immune complex-induced neutrophil functions: a focus on cell death. Eur J Clin Invest. 2018;48(Suppl. 2):e12948.  https://doi.org/10.1111/eci.12948.CrossRefPubMedGoogle Scholar
  2. 2.
    Paoliello-Paschoalato AB, Moreira MR, Azzolini AECS, Cavenaghi AA, Marzocchi-Machado CM, Donadi EA, et al. Activation of complement alternative pathway in rheumatoid arthritis: implications in peripheral neutrophils functions. Open Autoimmun J. 2011;3:1–9.  https://doi.org/10.2174/1876894601103010001.CrossRefGoogle Scholar
  3. 3.
    Paoliello-Paschoalato AB, Marchi LF, Andrade MF, Kabeya LM, Donadi EA, Lucisano-Valim YM. Fc-gamma and complement receptors and complement proteins in neutrophil activation in rheumatoid arthritis: contribution to pathogenesis and progression and modulation by natural products. Evid Based Complement Altern Med. 2015;2015:429878.  https://doi.org/10.1155/2015/429878.CrossRefGoogle Scholar
  4. 4.
    Bala A, Mondal C, Haldar PK, Khandelwal B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: clinical efficacy of dietary antioxidants. Inflammopharmacology. 2017;25(6):595–607.  https://doi.org/10.1007/s10787-017-0397-1.CrossRefPubMedGoogle Scholar
  5. 5.
    Behnen M, Leschczyk C, Möller S, Batel T, Klinger M, Solbach W, et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. J Immunol. 2014;193(4):1954–65.  https://doi.org/10.4049/jimmunol.1400478.CrossRefPubMedGoogle Scholar
  6. 6.
    Cecchi I, Rosa IA, Menegatti E, Roccatello D, Collantes-Estevez E, Lopez-Pedrera C, et al. Neutrophils: novel key players in rheumatoid arthritis. Current and future therapeutic targets. Autoimmun Rev. 2018;17(11):1138–49.  https://doi.org/10.1016/j.autrev.2018.06.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Cascão R, Rosário HS, Souto-Carneiro MM, Fonseca JE. Neutrophils in rheumatoid arthritis: more than simple final effectors. Autoimmun Rev. 2010;9(8):531–5.  https://doi.org/10.1016/j.autrev.2009.12.013.CrossRefPubMedGoogle Scholar
  8. 8.
    Kinger M, Kumar S, Kumar V. Some important dietary polyphenolic compounds: an anti-inflammatory and immunoregulatory perspective. Mini Rev Med Chem. 2018;18(15):1270–82.  https://doi.org/10.2174/1389557517666170208143410.CrossRefPubMedGoogle Scholar
  9. 9.
    Kirsch G, Abdelwahab AB, Chaimbault P. Natural and synthetic coumarins with effects on inflammation. Molecules. 2016;21:1322.  https://doi.org/10.3390/molecules21101322.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Nonose N, Pereira JA, Machado PRM, Rodrigues MR, Sato DT, Martinez CAR. Oral administration of curcumin (Curcuma longa) can attenuate the neutrophil inflammatory response in zymosan-induced arthritis in rats. Acta Cir Bras. 2014;29(11):727–34.  https://doi.org/10.1590/S0102-86502014001800006.CrossRefPubMedGoogle Scholar
  11. 11.
    Figueiredo-Rinhel ASG, Andrade MF, Landi-Librandi AP, Azzolini AECS, Kabeya LM, Bastos JK, et al. Incorporation of Baccharis dracunculifolia DC (Asteraceae) leaf extract into phosphatidylcholine-cholesterol liposomes improves its anti-inflammatory effect in vivo. Nat Prod Res. 2018.  https://doi.org/10.1080/14786419.2018.1448809.CrossRefPubMedGoogle Scholar
  12. 12.
    Oliveira FFB, Araújo JCB, Pereira AF, Brito GAC, Gondim DV, Ribeiro RA, et al. Antinociceptive and anti-inflammatory effects of Caryocar coriaceum Wittm fruit pulp fixed ethyl acetate extract on zymosan-induced arthritis in rats. J Ethnopharmacol. 2015;174:452–63.  https://doi.org/10.1016/j.jep.2015.08.017.CrossRefPubMedGoogle Scholar
  13. 13.
    Vongsak B, Gritsanapan W, Wongkrajang Y, Jantan I. In vitro inhibitory effects of Moringa oleifera leaf extract and its major components on chemiluminescence and chemotactic activity of phagocytes. Nat Prod Commun. 2013;8(11):1559–611.  https://doi.org/10.1177/1934578X1300801115.CrossRefPubMedGoogle Scholar
  14. 14.
    Detsi A, Kontogiorgis C, Hadjipavlou-Litina D. Coumarin derivatives: an updated patent review (2015–2016). Expert Opin Ther Pat. 2017;27(11):1201–26.  https://doi.org/10.1080/13543776.2017.1360284.CrossRefPubMedGoogle Scholar
  15. 15.
    Kabeya LM, Marchi AA, Kanashiro A, Lopes NP, Silva CHTP, Pupo MT, et al. Inhibition of horseradish peroxidase catalytic activity by new 3-phenylcoumarin derivatives: synthesis and structure-activity relationships. Bioorg Med Chem. 2007;15(3):1516–24.  https://doi.org/10.1016/j.bmc.2006.10.068.CrossRefPubMedGoogle Scholar
  16. 16.
    Roussaki M, Kontogiorgis CA, Hadjipavlou-Litina D, Hamilakis S, Detsi A. A novel synthesis of 3-aryl coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity. Bioorg Med Chem Lett. 2010;20(13):3889–922.  https://doi.org/10.1016/j.bmcl.2010.05.022.CrossRefPubMedGoogle Scholar
  17. 17.
    Robledo-O'Ryan N, Matos MJ, Vazquez-Rodriguez S, Santana L, Uriarte E, Moncada-Basualto M, et al. Synthesis, antioxidant and antichagasic properties of a selected series of hydroxy-3-arylcoumarins. Bioorg Med Chem. 2017;25(2):621–32.  https://doi.org/10.1016/j.bmc.2016.11.033.CrossRefPubMedGoogle Scholar
  18. 18.
    Kabeya LM, Silva CHTP, Kanashiro A, Campos JM, Azzolini AECS, Polizello ACM, et al. Inhibition of immune complex-mediated neutrophil oxidative metabolism: a pharmacophore model for 3-phenylcoumarin derivatives using GRIND-based 3D-QSAR and 2D-QSAR procedures. Eur J Med Chem. 2008;43(5):996–1007.  https://doi.org/10.1016/j.ejmech.2007.07.003.CrossRefPubMedGoogle Scholar
  19. 19.
    Andrade MF, Kabeya LM, Azzolini AECS, Santos EOL, Figueiredo-Rinhel ASG, Paris MRP, et al. 3-Phenylcoumarin derivatives selectively modulate different steps of reactive oxygen species production by immune complex-stimulated human neutrophils. Int Immunopharmacol. 2013;15(2):387–94.  https://doi.org/10.1016/j.intimp.2013.01.001.CrossRefPubMedGoogle Scholar
  20. 20.
    Andrade MF, Kabeya LM, Bortot LO, Santos GB, Santos EOL, Albiero LR, et al. The 3-phenylcoumarin derivative 6,7-dihydroxy-3–3',4'-methylenedioxyphenyl-coumarin downmodulates the FcγR- and CR-mediated oxidative metabolism and elastase release in human neutrophils: possible mechanisms underlying inhibition of the formation and release of neutrophil extracellular traps. Free Radic Biol Med. 2018;115:421–35.  https://doi.org/10.1016/j.freeradbiomed.2017.12.012.CrossRefPubMedGoogle Scholar
  21. 21.
    Landi-Librandi AP, Chrysostomo TN, Azzolini AECS, Marzocchi-Machado CM, de Oliveira CA, Lucisano-Valim YM. Study of quercetin-loaded liposomes as potential drug carriers: in vitro evaluation of human complement activation. J Liposome Res. 2012;22(2):89–99.  https://doi.org/10.3109/08982104.2011.615321.CrossRefPubMedGoogle Scholar
  22. 22.
    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Frie JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31(3):315–24.  https://doi.org/10.1002/art.1780310302.CrossRefPubMedGoogle Scholar
  23. 23.
    Dougados M, Aletaha D, van Riel P. Disease activity measures for rheumatoid arthritis. Clin Exp Rheumatol. 2007;25(5 Suppl 46):S22–S29.PubMedGoogle Scholar
  24. 24.
    Paoliello-Paschoalato AB, Azzolini AECS, Cruz MFC, Marchi LF, Kabeya LM, Donadi EA, et al. Isolation of healthy individuals' and rheumatoid arthritis patients' peripheral blood neutrophils by the gelatin and Ficoll-Hypaque methods: comparative efficiency and impact on the neutrophil oxidative metabolism and Fe gamma receptor expression. J Immunol Methods. 2014;412:70–7.  https://doi.org/10.1016/j.jim.2014.07.001.CrossRefPubMedGoogle Scholar
  25. 25.
    Santos EOL, Azzolini AECS, Lucisano-Valim YM. Optimization of a flow cytometric assay to evaluate the human neutrophil ability to phagocytose immune complexes via Fcγ and complement receptors. J Pharmacol Toxicol Methods. 2015;72:67–71.  https://doi.org/10.1016/j.vascn.2014.10.005.CrossRefPubMedGoogle Scholar
  26. 26.
    Lucisano YM, Mantovani B. Lysosomal enzyme release from polymorphonuclear leukocytes induced by immune complexes of IgM and IgG. J Immunol. 1984;132(4):2015–20.PubMedGoogle Scholar
  27. 27.
    Lucisano-Valim YM, Spadaro ACC. Isolation of gamma-globulin (IgG) from serum: a task that encourages students to consolidate concepts on protein structure. Biochem Educ. 1998;26(1):63–5.  https://doi.org/10.1016/S0307-4412(97)00121-0.CrossRefGoogle Scholar
  28. 28.
    Souto FO, Zarpelon AC, Staurengo-Ferrari L, Fattori V, Casagrande R, Fonseca MJV, et al. Quercetin reduces neutrophil recruitment induced by CXCL8, LTB4, and fMLP: inhibition of actin polymerization. J Nat Prod. 2011;74(2):113–8.  https://doi.org/10.1021/np1003017.CrossRefPubMedGoogle Scholar
  29. 29.
    Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow-cytometry. J Immunol Methods. 1991;139(2):271–9.  https://doi.org/10.1016/0022-1759(91)90198-O.CrossRefPubMedGoogle Scholar
  30. 30.
    Kanashiro A, Pessini AC, Machado RR, Malvar DC, Aguiar FA, Soares DM, et al. Characterization and pharmacological evaluation of febrile response on zymosan-induced arthritis in rats. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1631–R16401640.  https://doi.org/10.1152/ajpregu.90527.2008.CrossRefPubMedGoogle Scholar
  31. 31.
    Marchi LF, Paoliello-Paschoalato AB, Oliveira RDR, Azzolini AECS, Kabeya LM, Donadi EA, et al. Activation status of peripheral blood neutrophils and the complement system in adult rheumatoid arthritis patients undergoing combined therapy with infliximab and methotrexate. Rheumatol Int. 2018;38(6):1043–52.  https://doi.org/10.1007/s00296-018-3997-1.CrossRefPubMedGoogle Scholar
  32. 32.
    Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013;17(3):638–50.  https://doi.org/10.1016/j.intimp.2013.06.034.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Albiero LR, Andrade MF, Marchi LF, Azzolini AECS, Oliveira RDR, Emery FS, et al. Therapeutic potential modulation of 3-phenylcoumarin derivative-loaded liposomes in peripheral blood neutrophils functions from rheumatoid arthritis patients. CD-ROM. Annals of XLI Congress of the Brazilian Society of Immunology; 2016 Oct 29-Nov 2; Campos do Jordão, SP (Brazil): SBI; c2016. CD-ROM.Google Scholar
  34. 34.
    Fairhurst AM, Wallace PK, Jawad ASM, Goulding NJ. Rheumatoid peripheral blood phagocytes are primed for activation but have impaired Fc-mediated generation of reactive oxygen species. Arthritis Res Ther. 2007;9(2):R29.  https://doi.org/10.1186/ar2144.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hattori H, Subramanian KK, Sakai J, Jia Y, Li Y, Porter TF, et al. Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. PNAS. 2010;107(8):3546–51.  https://doi.org/10.1073/pnas.0914351107.CrossRefPubMedGoogle Scholar
  36. 36.
    Sakai J, Li J, Subramanian KK, Mondal S, Bajrami B, Hattori H, et al. Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity. 2012;37(6):1037–49.  https://doi.org/10.1016/j.immuni.2012.08.017.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91.  https://doi.org/10.1083/jcb.201006052.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Reeves EP, Lu H, Jacobs HL, Messina CGM, Bolsover S, Gabella G, et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. 2002;416(6878):291–7.  https://doi.org/10.1038/416291a.CrossRefPubMedGoogle Scholar
  39. 39.
    Kawakami E, Tokunaga A, Ozawa M, Sakamoto R, Yoshida N. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech Dev. 2015;135:31–42.  https://doi.org/10.1016/j.mod.2014.10.001.CrossRefPubMedGoogle Scholar
  40. 40.
    Kirchner T, Möller S, Klinger M, Solbach W, Laskay T, Behnen M. The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Mediat Inflamm. 2012;2012:849136.  https://doi.org/10.1155/2012/849136.CrossRefGoogle Scholar
  41. 41.
    Lightfoot YL, Kaplan MJ. Disentangling the role of neutrophil extracellular traps in rheumatic diseases. Curr Opin Rheumatol. 2017;29(1):65–70.  https://doi.org/10.1097/BOR.0000000000000357.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pérez-Sánchez C, Ruiz-Limón P, Aguirre MA, Jiménez-Gómez Y, Arias-de la Rosa I, Ábalos-Aguilera MC, et al. Diagnostic potential of NETosis-derived products for disease activity, atherosclerosis and therapeutic effectiveness in rheumatoid arthritis patients. J Autoimmun. 2017;82:31–40.  https://doi.org/10.1016/j.jaut.2017.04.007.CrossRefPubMedGoogle Scholar
  43. 43.
    Nanjundaiah SM, Astry B, Moudgil KD. Mediators of inflammation-induced bone damage in arthritis and their control by herbal products. Evid Based Complement Altern Med. 2013;2013:518094.  https://doi.org/10.1155/2013/518094.CrossRefGoogle Scholar
  44. 44.
    Munin A, Edwards-Lévy F. Encapsulation of natural polyphenolic compounds: a review. Pharmaceutics. 2011;3(4):793–829.  https://doi.org/10.3390/pharmaceutics3040793.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    van den Hoven JM, Van Tomme SR, Metselaar JM, Nuijen B, Beijnen JH, Storm G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm. 2011;8(4):1002–155.  https://doi.org/10.1021/mp2000742.CrossRefPubMedGoogle Scholar
  46. 46.
    Kapoor B, Singh SK, Gulati M, Gupta R, Vaidya Y. Application of liposomes in treatment of rheumatoid arthritis: quo vadis. Sci World J. 2014;2014:978351.  https://doi.org/10.1155/2014/978351.CrossRefGoogle Scholar
  47. 47.
    Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010;20(3):228–43.  https://doi.org/10.3109/08982100903347923.CrossRefPubMedGoogle Scholar
  48. 48.
    Rzodkiewicz P, Gąsińska E, Gajewski M, Bujalska-Zadrożny M, Szukiewicz D, Maśliński S. Esculetin reduces leukotriene B4 level in plasma of rats with adjuvant-induced arthritis. Reumatologia. 2016;54(4):161–4.  https://doi.org/10.5114/reum.2016.62469.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Umar S, Kumar A, Sajad M, Zargan J, Ansari M, Ahmad S, et al. Hesperidin inhibits collagen-induced arthritis possibly through suppression of free radical load and reduction in neutrophil activation and infiltration. Rheumatol Int. 2013;33(3):657–63.  https://doi.org/10.1007/s00296-012-2430-4.CrossRefPubMedGoogle Scholar
  50. 50.
    Gardi C, Bauerova K, Stringa B, Kuncirova V, Slovak L, Ponist S, et al. Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis. Arch Biochem Biophys. 2015;583:150–7.  https://doi.org/10.1016/j.abb.2015.08.008.CrossRefPubMedGoogle Scholar
  51. 51.
    Landi-Librandi AP, Oliveira CA, Azzolini AECS, Kabeya LM, del Ciampo JO, Bentley MVLB, et al. In vitro evaluation of the antioxidant activity of liposomal flavonols by the HRP-H2O2-luminol system. J Microencapsul. 2011;28(4):258–67.  https://doi.org/10.3109/02652048.2011.559283.CrossRefPubMedGoogle Scholar
  52. 52.
    Landi-Librandi AP, Azzolini AECS, Oliveira CA, Lucisano-Valim YM. Inhibitory activity of liposomal flavonoids during oxidative metabolism of human neutrophils upon stimulation with immune complexes and phorbol ester. Drug Deliv. 2012;19(4):177–87.  https://doi.org/10.3109/10717544.2012.679710.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lucinéia Reuse Albiero
    • 1
    • 5
    Email author
  • Micássio Fernandes de Andrade
    • 1
    • 6
    Email author
  • Larissa Fávaro Marchi
    • 2
  • Ana Paula Landi-Librandi
    • 2
  • Andréa Silva Garcia de Figueiredo-Rinhel
    • 2
  • Camila Andressa Carvalho
    • 2
  • Luciana Mariko Kabeya
    • 2
  • Renê Donizeti Ribeiro de Oliveira
    • 3
  • Ana Elisa Caleiro Seixas Azzolini
    • 2
  • Mônica Tallarico Pupo
    • 4
  • Flávio da Silva Emery
    • 4
  • Yara Maria Lucisano-Valim
    • 2
    Email author
  1. 1.Department of Biochemistry and ImmunologyRibeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
  2. 2.Department of Physics and ChemistrySchool of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão PretoBrazil
  3. 3.Division of RheumatologyRibeirão Preto Medical School, University of São PauloRibeirão PretoBrazil
  4. 4.Department of Pharmaceutical SciencesSchool of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão PretoBrazil
  5. 5.Federal University of Mato GrossoSinopBrazil
  6. 6.School of Health SciencesThe State University of Rio Grande do NorteMossoróBrazil

Personalised recommendations