Advertisement

Immunomodulatory activity of hyaluronidase is associated with metabolic adaptations during acute inflammation

  • Priscilla A. T. Pereira
  • Claudia S. Bitencourt
  • Mouzarllem B. Reis
  • Fabiani G. Frantz
  • Carlos A. Sorgi
  • Camila O. S. Souza
  • Célio L. Silva
  • Luiz G. GardinassiEmail author
  • Lúcia H. FaccioliEmail author
Original Research Paper
  • 70 Downloads

Abstract

Objective and design

Investigate survival outcomes, and immunological and metabolomic effects of hyaluronidase (Hz) treatment during mouse models of acute inflammation and sepsis.

Methods

Survival of C57Bl/6 mice was monitored after lethal challenge with lipopolysaccharide (LPS) or cecal and ligation puncture (CLP)-induced sepsis and treated with Hz or saline. Mice were also challenged with LPS and treated with Hz for leukocyte counting, cytokine quantification and determination of metabolomic profiles in the peritoneal fluid.

Results

Hz treatment improved survival outcomes after lethal challenge with LPS or CLP-induced sepsis. LPS challenge promoted acute neutrophil accumulation and production of interleukin-1β (IL-1β) and IL-6 in the peritoneum, whereas Hz treatment suppressed neutrophil infiltration and cytokine production. We further characterized the metabolomic alterations caused by LPS challenge, which predicted activity of metabolic pathways related to fatty acids and eicosanoids. Hz treatment had a profound effect over the metabolic response, reflected by reductions of the relative levels of fatty acids.

Conclusion

Collectively, these data demonstrate that Hz treatment is associated with metabolic reprogramming of pathways that sustain the inflammatory response.

Keywords

Hyaluronidase Hyaluronic acid Sepsis Acute inflammation Metabolomics 

Notes

Acknowledgments

This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP grant #2009/07169-5, #2014/07125-6 and EMU #2015/00658-1 to LF; FAPESP scholarship #2007/04741-4 to CB); the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant #302514/2015-5); and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES)–Código de Financiamento 001 (process #1746212, #88882.317663/2019-01 and #88887.363659/2019-00 to LG; #150991/2011-8 to CB).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11_2019_1297_MOESM1_ESM.tif (117 kb)
Supplementary file1 (Tif 118 kb)
11_2019_1297_MOESM2_ESM.xlsx (188 kb)
Supplementary file2 (XLSX 188 kb)
11_2019_1297_MOESM3_ESM.xlsx (1.6 mb)
Supplementary file3 (XLSX 1608 kb)
11_2019_1297_MOESM4_ESM.xlsx (302 kb)
Supplementary file4 (XLSX 302 kb)

References

  1. 1.
    Buhren BA, Schrumpf H, Hoff N-P, Bölke E, Hilton S, Gerber PA. Hyaluronidase: from clinical applications to molecular and cellular mechanisms. Eur J Med Res. 2016;21:5.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dunn AL, Heavner JE, Racz G, Day M. Hyaluronidase: a review of approved formulations, indications and off-label use in chronic pain management. Expert Opin Biol Ther. 2010;10:127–31.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lee-Sayer SSM, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P. The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol. 2015;6:150.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hodge-Dufour J, Noble PW, Horton MR, Bao C, Wysoka M, Burdick MD, et al. Induction of IL-12 and chemokines by hyaluronan requires adhesion-dependent priming of resident but not elicited macrophages. J Immunol. 1997;159:2492–500.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Horton MR, Burdick MD, Strieter RM, Bao C, Noble PW. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. J Immunol. 1998;160:3023–30.PubMedPubMedCentralGoogle Scholar
  6. 6.
    McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest. 1996;98:2403–13.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bitencourt CS, Pereira PA, Ramos SG, Sampaio SV, Arantes EC, Aronoff DM, et al. Hyaluronidase recruits mesenchymal-like cells to the lung and ameliorates fibrosis. Fibrogenesis Tissue Repair. 2011;4:3.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    da Silva BC, Gelfuso GM, Pereira PAT, de Assis PA, Tefé-Silva C, Ramos SG, et al. Hyaluronidase-loaded PLGA Microparticles as a new strategy for the treatment of pulmonary fibrosis. Tissue Eng Part A. 2014;21:246–56.Google Scholar
  9. 9.
    Fronza M, Caetano GF, Leite MN, Bitencourt CS, Paula-Silva FWG, Andrade TAM, et al. Hyaluronidase modulates inflammatory response and accelerates the cutaneous wound healing. PLoS ONE. 2014;9:e112297.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dokoshi T, Zhang L-J, Nakatsuji T, Adase CA, Sanford JA, Paladini RD, et al. Hyaluronidase inhibits reactive adipogenesis and inflammation of colon and skin. JCI Insight. 2018;3(21):e123072.PubMedCentralCrossRefGoogle Scholar
  11. 11.
    Huang Z, Zhao C, Chen Y, Cowell JA, Wei G, Kultti A, et al. Recombinant human hyaluronidase PH20 does not stimulate an acute inflammatory response and inhibits lipopolysaccharide-induced neutrophil recruitment in the air pouch model of inflammation. J Immunol. 2014;192:5285–95.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012;10:701–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Weis S, Carlos AR, Moita MR, Singh S, Blankenhaus B, Cardoso S, et al. Metabolic adaptation establishes disease tolerance to sepsis. Cell. 2017;169(1263–1275):e14.Google Scholar
  15. 15.
    Berg S. Hyaluronan turnover in relation to infection and sepsis. J Intern Med. 1997;242:73–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Yagmur E, Koch A, Haumann M, Kramann R, Trautwein C, Tacke F. Hyaluronan serum concentrations are elevated in critically ill patients and associated with disease severity. Clin Biochem. 2012;45:82–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Berg S, Brodin B, Hesselvik F, Laurent TC, Maller R. Elevated levels of plasma hyaluronan in septicaemia. Scand J Clin Lab Invest. 1988;48:727–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu Y-Y, Lee C-H, Dedaj R, Zhao H, Mrabat H, Sheidlin A, et al. High-molecular-weight hyaluronan—a possible new treatment for sepsis-induced lung injury: a preclinical study in mechanically ventilated rats. Crit Care. 2008;12:R102.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wen H, Hogaboam CM, Gauldie J, Kunkel SL. Severe sepsis exacerbates cell-mediated immunity in the lung due to an altered dendritic cell cytokine profile. Am J Pathol. 2006;168:1940–50.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sorgi CA, Peti APF, Petta T, Meirelles AFG, Fontanari C, de Moraes LAB, et al. Comprehensive high-resolution multiple-reaction monitoring mass spectrometry for targeted eicosanoid assays. Sci Data. 2018;5:180167.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yu T, Park Y, Johnson JM, Jones DP. apLCMS—adaptive processing of high-resolution LC/MS data. Bioinformatics. 2009;25:1930–6.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, et al. Predicting network activity from high throughput metabolomics. PLoS Comput Biol. 2013;9:e1003123.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Salek RM, Steinbeck C, Viant MR, Goodacre R, Dunn WB. The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience. 2013;2:13.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gardinassi LG, Arévalo-Herrera M, Herrera S, Cordy RJ, Tran V, Smith MR, et al. Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling. Redox Biol. 2018;17:158–70.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gardinassi LG, Cordy RJ, Lacerda MVG, Salinas JL, Monteiro WM, Melo GC, et al. Metabolome-wide association study of peripheral parasitemia in Plasmodium vivax malaria. Int J Med Microbiol. 2017;307:533–41.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fronza M, Muhr C, da Silveira DSC, Sorgi CA, Rodrigues SF de P, Farsky SHP, et al. Hyaluronidase decreases neutrophils infiltration to the inflammatory site. Inflamm Res. 2016;65:533–42.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nedvetzki S, Gonen E, Assayag N, Reich R, Williams RO, Thurmond RL, et al. RHAMM, a receptor for hyaluronan-mediated motility, compensates for CD44 in inflamed CD44-knockout mice: a different interpretation of redundancy. Proc Natl Acad Sci USA. 2004;101:18081–6.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Carroll RG, Zasłona Z, Galván-Peña S, Koppe EL, Sévin DC, Angiari S, et al. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. J Biol Chem. 2018;293:5509–21.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Everts B, Amiel E, Huang SC-C, Smith AM, Chang C-H, Lam WY, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15:323–32.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sinclair C, Bommakanti G, Gardinassi L, Loebbermann J, Johnson MJ, Hakimpour P, et al. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation. Science. 2017;357:1014–21.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pacheco P, Bozza FA, Gomes RN, Bozza M, Weller PF, Castro-Faria-Neto HC, et al. Lipopolysaccharide-induced leukocyte lipid body formation in vivo: innate immunity elicited intracellular loci involved in eicosanoid metabolism. J Immunol. 2002;169:6498–506.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zoccal KF, Gardinassi LG, Sorgi CA, Meirelles AFG, Bordon KCF, Glezer I, et al. CD36 shunts eicosanoid metabolism to repress CD14 licensed interleukin-1β release and inflammation. Front Immunol. 2018;9:890.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dennis EA, Norris PC. Eicosanoid storm in infection and inflammation. Nat Rev Immunol. 2015;15:511–23.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Rios-Santos F, Benjamim CF, Zavery D, Ferreira SH, Cunha F de Q. A critical role of leukotriene B4 in neutrophil migration to infectious focus in cecal ligaton and puncture sepsis. Shock. 2003;19:61–5.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Reddy RC, Chen GH, Tateda K, Tsai WC, Phare SM, Mancuso P, et al. Selective inhibition of COX-2 improves early survival in murine endotoxemia but not in bacterial peritonitis. Am J Physiol Lung Cell Mol Physiol. 2001;281:L537–543.PubMedCrossRefGoogle Scholar
  37. 37.
    Zoccal KF, Ferreira GZ, Prado MKB, Gardinassi LG, Sampaio SV, Faccioli LH. LTB4 and PGE2 modulate the release of MIP-1α and IL-1β by cells stimulated with Bothrops snake venoms. Toxicon. 2018;150:289–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Pereira PAT, Assis PA, Prado MKB, Ramos SG, Aronoff DM, de Paula-Silva FWG, et al. Prostaglandins D2and E2have opposite effects on alveolar macrophages infected with Histoplasma capsulatum. J Lipid Res. 2018;59:195–206.PubMedCrossRefGoogle Scholar
  39. 39.
    Hasan Z, Palani K, Rahman M, Thorlacius H. Targeting CD44 expressed on neutrophils inhibits lung damage in abdominal sepsis. Shock. 2011;35:567–72.PubMedCrossRefGoogle Scholar
  40. 40.
    McDonald B, McAvoy EF, Lam F, Gill V, de la Motte C, Savani RC, et al. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J Exp Med. 2008;205:915–27.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Petrey AC, de la Motte CA. Hyaluronan, a Crucial regulator of inflammation. Front Immunol. 2014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949149/. Accessed 18 June 2019
  42. 42.
    Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009;30:475–87.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Melo ES, Barbeiro HV, Ariga S, Goloubkova T, Curi R, Velasco IT, et al. Immune cells and oxidative stress in the endotoxin tolerance mouse model. Braz J Med Biol Res. 2010;43:57–67.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Priscilla A. T. Pereira
    • 1
    • 2
  • Claudia S. Bitencourt
    • 1
    • 3
  • Mouzarllem B. Reis
    • 1
  • Fabiani G. Frantz
    • 1
  • Carlos A. Sorgi
    • 1
  • Camila O. S. Souza
    • 1
  • Célio L. Silva
    • 4
  • Luiz G. Gardinassi
    • 1
    Email author
  • Lúcia H. Faccioli
    • 1
    Email author
  1. 1.Departamento de Análises Clínicas, Toxicológicas e Bromatológicas. Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Departamento de Medicina, Faculdades de DracenaFundação Dracenense de Educação e CulturaDracenaBrazil
  3. 3.Centro Universitário das Faculdades Associadas Ao EnsinoSão João da Boa VistaBrazil
  4. 4.Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations