Advertisement

Suppressors of cytokine signalling (SOCS)-1 inhibits neuroinflammation by regulating ROS and TLR4 in BV2 cells

  • Jinxia Hu
  • Weiwei Wang
  • Qi Hao
  • Tao Zhang
  • Hanhan Yin
  • Miao Wang
  • Cheng Zhang
  • Conghui Zhang
  • Lijie Zhang
  • Xiao Zhang
  • Wei Wang
  • Xichuan Cao
  • Jie XiangEmail author
  • Xinchun YeEmail author
Original Research Paper

Abstract

Objective

The suppressors of cytokine signaling (SOCS) proteins are physiological suppressors of cytokine signaling which have been identified as a negative feedback loop to weaken cytokine signaling. However, the underlying molecular mechanisms is unknown. This study was to investigate the role of SOCS1 in the oxygen–glucose deprivation and reoxygenation (OGDR) or LPS-induced inflammation in microglia cell line BV-2 cells.

Materials and methods

BV-2 microglial cells were used to construct inflammation model. A SOCS1 over-expression plasmid was constructed, and the SOCS1-deficient cells were generated by utilizing the CRISPR/CAS9 system. BV-2 microglial cells were pretreated with over-expression plasmid or SOCS1 CRISPR plasmid before OGDR and LPS stimulation. The effect of SOCS1 on proinflammatory cytokines, toll-like receptor 4 (TLR4), and reactive oxygen species (ROS) were evaluated.

Results

We found that SOCS1 increased in OGDR or LPS-treated BV-2 microglial cells in vitro. SOCS1 over-expression significantly reduced the production of proinflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6, and CRISPR/CAS9-mediated SOCS1 knockout reversed this effect. Also we determined that SOCS1 over-expression reduced the level of reactive oxygen species (ROS) while the absence of SOCS1 increased the production of ROS after OGDR or LPS-stimulated inflammation. Furthermore, we found that OGDR and LPS induced the expression of toll-like receptor 4 (TLR4) in BV2 cells. Nevertheless, SOCS1 over-expression attenuated the expression of TLR4, while knockdown of SOCS1 upregulated TLR4.

Conclusions

Our study indicated that SOCS1 played a protective role under inflammatory conditions in OGDR or LPS treated BV-2 cells through regulating ROS and TLR4. These data demonstrated that SOCS1 served as a potential therapeutic target to alleviate inflammation after ischemic stroke.

Keywords

Oxygen–glucose deprivation and reoxygenation (OGDR) Inflammation suppressor of cytokine signaling 1 (SOCS1) Lipopolysaccharide (LPS) Reactive oxygen species (ROS) Toll-like receptor 4 (TLR4) 

Notes

Acknowledgements

This work was supported by Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX18_1931), the Natural Science Research of Jiangsu Higher Education Institutions of China (17KJB320017), the National Natural Science Foundation of Jiangsu Province (BK20191152, BL2014031), Xuzhou key research and development program (KC18055, KC19131), Xuzhou Innovation Capacity Building Program (KC19239), the Summit of Six Top Talents Program of Jiangsu Province (2017-WSN-118), and the Fundamental Research Funds for the Central Universities (2018BSCXA12).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Jia L, Hao F, Wang W, Qu Y. Circulating miR-145 is associated with plasma high-sensitivity C-reactive protein in acute ischemic stroke patients. Cell Biochem Funct. 2015;33(5):314–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Ip CF, Zhao YM, Chan KW, Cheng YL, Tong PS, Chandrashekar O, et al. Neuroprotective effect of a novel Chinese herbal decoction on cultured neurons and cerebral ischemic rats. BMC Complement Altern Med. 2016;16(1):437.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87(5):779–89.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hwang JH, Kumar VR, Kang SY, Jung HW, Park YK. Effects of flower buds extract of Tussilago farfara on focal cerebral ischemia in rats and inflammatory response in BV2 microglia. Chin J Integr Med. 2018;24(11):844–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu CZ, He AY, Chen LQ, Limbu SM, Wang YW, Zhang ML, et al. Molecular characterization and immune response to lipopolysaccharide (LPS) of the suppressor of cytokine signaling (SOCS)-1, 2 and 3 genes in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2016;50:160–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ransohoff RM. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity. 2009;31(5):711–21.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chikuma S, Kanamori M, Mise-Omata S, Yoshimura A. Suppressors of cytokine signaling: potential immune checkpoint molecules for cancer immunotherapy. Cancer Sci. 2017;108(4):574–80.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol. 2006;7(9):937–45.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Akihiko Y, Hitomi N, Yumiko M, Toshikatsu H. Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res Ther. 2005;7(3):100–10.CrossRefGoogle Scholar
  10. 10.
    Pedrós I, Petrov D, Artiach G, Abad S, Ramon C, Sureda F, et al. Adipokine pathways are altered in hippocampus of an experimental mouse model of Alzheimer's disease. J Nutr Health Aging. 2015;19:403–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Mirza S, Sofia V, Mao M, Andre L, Farnaz R, Peter C, et al. NOSl-derived nitric oxide promotes NF-kB transcriptional activity through inhibition of suppressor of cytokine signaling. J Exp Med. 2015;212(10):1725–38.CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Zhou B, Deng B, Zhang F, Wu J, Wang Y, et al. Amyloid-beta induces hepatic insulin resistance in vivo via JAK2. Diabetes. 2013;62(4):1159–66.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103–15.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lin Y, Tang G, Jiao Y, Yuan Y, Zheng Y, Chen Y, et al. Propionibacterium acnes induces intervertebral disc degeneration by promoting iNOS/NO and COX-2/PGE2 activation via the ROS-dependent NF-κB pathway. Oxidative Med Cell Longev. 2018;2018:3692752.Google Scholar
  15. 15.
    Finamore A, Ambra R, Nobili F, Garaguso I, Raguzzini A, Serafini M. Redox role of Lactobacillus caseishirota against the cellular damage induced by 2,2′-azobis (2-amidinopropane) dihydrochloride-induced oxidative and inflammatory stress in enterocytes-like epithelial cells. Front Immunol. 2018;9:1131.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7(4):354–65.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Oh J, Hur MW, Lee CE. SOCS1 protects protein tyrosine phosphatases by thioredoxin upregulation and attenuates Jaks to suppress ROS-mediated apoptosis. Oncogene. 2009;28(35):3145–56.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zakeri A, Yazdi FG. Toll-like receptor-mediated involvement of innate immune cells in asthma disease. Biochim Biophys Acta Gen Subj. 2017;1861(7):1715–28.CrossRefGoogle Scholar
  19. 19.
    He Z, Zhou Y, Lin L, Wang Q, Khor S, Mao Y, et al. Dl-3-n-Butylphthalide attenuates acute inflammatory activation in rats with spinal cord injury by inhibiting microglial TLR4/NF-κB signalling. J Cell Mol Med. 2017;21(11):3010–22.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Dallas S, Block ML, Thompson DM, Bonini MG, Ronaldson PT, Bendayan R, et al. Microglial activation decreases retention of the protease inhibitor saquinavir: implications for HIV treatment. J Neuroinflamm. 2013;10(1):58.CrossRefGoogle Scholar
  21. 21.
    Shi YW, Zhang XC, Chen C, Tang M, Wang ZW, Liang XM, et al. Schisantherin A attenuates ischemia/reperfusion-induced neuronal injury in rats via regulation of TLR4 and C5aR1 signaling pathways. Brain Behav Immun. 2017;66:244.PubMedCrossRefGoogle Scholar
  22. 22.
    Belinga VF, Wu GJ, Yan FL, Limbenga EA. Splenectomy following MCAO inhibits the TLR4–NF-κB signaling pathway and protects the brain from neurodegeneration in rats. J Neuroimmunol. 2016;293:105–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu Y, Li W, Zhou C, Lu F, Gao T, Liu Y, et al. Ketamine inhibits lipopolysaccharide-induced astrocytes activation by suppressing TLR4/NF-ĸB pathway. Cell Physiol Biochem. 2012;30(3):609–17.PubMedCrossRefGoogle Scholar
  24. 24.
    Cui G, Zuo T, Zhao Q, Hu J, Jin P, Zhao H, et al. ROCK mediates the inflammatory response in thrombin induced microglia. Neurosci Lett. 2013;554(1):82.PubMedCrossRefGoogle Scholar
  25. 25.
    Shi D, Li D, Wang Q, Kong X, Mei H, Shen Y, et al. Silencing SOCS1 in dendritic cells promote survival of mice with systemic Candida albicans infection via inducing Th1-cell differentiation. Immunol Lett. 2018;197:53–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Croker BA, Kiu H, Nicholson SE. SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol. 2008;19(4):414–22.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Neumann H, Kotter MR, Franklin RJM. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009;132(2):288.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Qin H, Yeh WI, De SP, Holdbrooks AT, Liu Y, Muldowney MT, et al. Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc Natl Acad Sci USA. 2012;109(13):5004–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Boche D, Perry VH, Nicoll JAR. Review: Activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39(1):3–18.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Baker BJ, Akhtar LN, Benveniste EN. SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol. 2009;30:392–400.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Henry RJ, Kerr DM, Finn DP, Roche M. FAAH-mediated modulation of TLR3-induced neuroinflammation in the rat hippocampus. J Neuroimmunol. 2014;276(1–2):126–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Mathew AS, Kurian SS, Sundaresan N, Jayalekshmi B, Prema FR, John A, et al. Pattern of blood component utilization in a teaching hospital in South Kerala. Acad Med J India. 2014.Google Scholar
  33. 33.
    Woo JH, Lee JH, Kim H, Park SJ, Joe EH, Jou I. Control of inflammatory responses: a new paradigm for the treatment of chronic neuronal diseases. Exp Neurobiol. 2015;24(2):95–102.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Muratsu D, Yoshiga D, Taketomi T, Onimura T, Seki Y, Matsumoto A, et al. Zoledronic acid enhances lipopolysaccharide-stimulated proinflammatory reactions through controlled expression of SOCS1 in macrophages. PLoS ONE. 2013;8(7):e67906.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lofrumento DD, Nicolardi G, Cianciulli A, Nuccio FD, Pesa VL, Carofiglio V, et al. Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson's-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun. 2014;20(3):249.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Berit C, Qun YX, Dolores GW, Sabin B, Wulf O, Mahavir S, et al. Silencing suppressor of cytokine signaling-1 (SOCS1) in macrophages improves Mycobacterium tuberculosis control in an interferon-gamma (IFN-gamma)-dependent manner. J Biol Chem. 2011;286(30):26873–87.CrossRefGoogle Scholar
  37. 37.
    Yoshimura A, Suzuki M, Sakaguchi R, Hanada T, Yasukawa H. SOCS, inflammation, and autoimmunity. Front Immunol. 2012;3:20.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Penaphilippides JC, Caballerogarrido E, Lordkipanidze T, Roitbak T. In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J Neuroinflamm. 2016;13(1):287.CrossRefGoogle Scholar
  39. 39.
    Rubartelli A. Redox control of NLRP3 inflammasome activation in health and disease. J Leukoc Biol. 2012;92(5):951–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Inoue M, Williams KL, Oliver T, Vandenabeele P, Rajan JV, Miao EA, et al. Interferon-β therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Sci Signal. 2012;5(225):38.CrossRefGoogle Scholar
  41. 41.
    Lopez-Sanz L, Bernal S, Recio C, Lazaro I, Oguiza A, Melgar A, et al. SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition. Lab Investig. 2018;98(10):1276–90.PubMedCrossRefGoogle Scholar
  42. 42.
    Takeda K, Akira S. Microbial recognition by Toll-like receptors. J Dermatol Sci. 2004;34(2):73–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang H, Zhao Z, Pang X, Yang J, Yu H, Zhang Y, et al. Genistein protects against Ox-LDL-induced inflammation through microRNA-155/SOCS1-mediated repression of NF-ĸB signaling pathway in HUVECs. Inflammation. 2017;40(4):1450–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Eberle ME, Dalpke AH. Dectin-1 stimulation induces suppressor of cytokine signaling 1, thereby modulating TLR signaling and T cell responses. J Immunol. 2012;188(11):5644–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Crespo A, Filla MB, Russell SW, Murphy WJ. Indirect induction of suppressor of cytokine signalling-1 in macrophages stimulated with bacterial lipopolysaccharide: partial role of autocrine/paracrine interferon-alpha/beta. Biochem J. 2000;349(1):99–104.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Dalpke AH, Opper S, Zimmermann S, Heeg K. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J Immunol. 2001;166(12):7082–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Kimura A, Naka T, Muta T, Takeuchi O, Akira S, Kawase I, et al. Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK–STAT. Proc Natl Acad Sci USA. 2005;102(47):17089.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jinxia Hu
    • 1
    • 4
  • Weiwei Wang
    • 2
    • 3
  • Qi Hao
    • 1
  • Tao Zhang
    • 1
  • Hanhan Yin
    • 1
  • Miao Wang
    • 1
  • Cheng Zhang
    • 1
  • Conghui Zhang
    • 1
  • Lijie Zhang
    • 2
  • Xiao Zhang
    • 2
  • Wei Wang
    • 2
  • Xichuan Cao
    • 4
  • Jie Xiang
    • 2
    Email author
  • Xinchun Ye
    • 1
    Email author
  1. 1.Institute of Stroke CenterThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
  2. 2.Department of Rehabilitation MedicineThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouPeople’s Republic of China
  3. 3.Department of Rehabilitation MedicineLinyi Cancer HospitalLinyiPeople’s Republic of China
  4. 4.School of Material Science and EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations