Advertisement

A review of inflammatory mechanism in airway diseases

  • Parya Aghasafari
  • Uduak George
  • Ramana Pidaparti
Review
  • 57 Downloads

Background

Inflammation in the lung is the body’s natural response to injury. It acts to remove harmful stimuli such as pathogens, irritants, and damaged cells and initiate the healing process. Acute and chronic pulmonary inflammation are seen in different respiratory diseases such as; acute respiratory distress syndrome, chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF).

Findings

In this review, we found that inflammatory response in COPD is determined by the activation of epithelial cells and macrophages in the respiratory tract. Epithelial cells and macrophages discharge transforming growth factor-β (TGF-β), which trigger fibroblast proliferation and tissue remodeling. Asthma leads to airway hyper-responsiveness, obstruction, mucus hyper-production, and airway-wall remodeling. Cytokines, allergens, chemokines, and infectious agents are the main stimuli that activate signaling pathways in epithelial cells in asthma. Mutation of the CF transmembrane conductance regulator (CFTR) gene results in CF. Mutations in CFTR influence the lung epithelial innate immune function that leads to exaggerated and ineffective airway inflammation that fails to abolish pulmonary pathogens. We present mechanistic computational models (based on ordinary differential equations, partial differential equations and agent-based models) that have been applied in studying the complex physiological and pathological mechanisms of chronic inflammation in different airway diseases.

Conclusion

The scope of the present review is to explore the inflammatory mechanism in airway diseases and highlight the influence of aging on airways’ inflammation mechanism. The main goal of this review is to encourage research collaborations between experimentalist and modelers to promote our understanding of the physiological and pathological mechanisms that control inflammation in different airway diseases.

Keywords

Inflammation Inflammaging Airway disease Computational modeling 

Notes

Acknowledgements

The authors thank NSF for supporting this work through a Grant CMMI-1430379.

References

  1. 1.
    Ahmed AU. An overview of inflammation: mechanism and consequences. Frontiers in Biology. 2011;6(4):274–81.Google Scholar
  2. 2.
    Ward P. Acute lung injury: how the lung inflammatory response works. Eur Respir Soc; 2003;44:22s–23sCrossRefGoogle Scholar
  3. 3.
    Lee G, Walser TC, Dubinett SM. Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer. Curr Opin Pulm Med. 2009;15(4):303–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.CrossRefGoogle Scholar
  5. 5.
    Ortega-Gómez A, Perretti M, Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med. 2013;5(5):661–74.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Maskrey BH, Megson IL, Whitfield PD, Rossi AG. Mechanisms of resolution of inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):1001–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Najar M, Krayem M, Merimi M, Burny A, Meuleman N, Bron D, et al. Insights into inflammatory priming of mesenchymal stromal cells: functional biological impacts. Inflamm Res. 2018.  https://doi.org/10.1007/s00011-018-1131-1.CrossRefPubMedGoogle Scholar
  8. 8.
    Lumb AB. Nunn’s applied respiratory physiology eBook. Amsterdam: Elsevier Health Sciences; 2016.Google Scholar
  9. 9.
    Tripathi P, Aggarwal A. NF-kB transcription factor: a key player in the generation of immune response. Curr Sci Bangalore. 2006;90(4):519.Google Scholar
  10. 10.
    Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17(3–4):293.PubMedGoogle Scholar
  11. 11.
    Lee I-T, Yang C-M. Inflammatory signalings involved in airway and pulmonary diseases. Mediat Inflamm. 2013;2013:791231.Google Scholar
  12. 12.
    Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, et al. Inflammatory mechanisms in the lung. J Inflamm Res. 2009;2:1–11.PubMedGoogle Scholar
  13. 13.
    Nelson RJ. Seasonal immune function and sickness responses. Trends Immunol. 2004;25(4):187–92.CrossRefPubMedGoogle Scholar
  14. 14.
    Nelson RJ, Demas GE. Seasonal changes in immune function. Q Rev Biol. 1996:511–48.CrossRefPubMedGoogle Scholar
  15. 15.
    Colgan SP, Curtis VF, Campbell EL. The inflammatory tissue microenvironment in IBD. Inflamm Bowel Dis. 2013;19(10):2238.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dantzer R. Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun. 2001;15(1):7–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.CrossRefGoogle Scholar
  18. 18.
    Chung K, Adcock I. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008;31(6):1334–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Hartupee J, Mann DL. Role of inflammatory cells in fibroblast activation. J Mol Cell Cardiol. 2016;93:143–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. Longev Healthspan. 2013;2(1):8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65(suppl_3):140-S6.Google Scholar
  22. 22.
    Brodland GW. How computational models can help unlock biological systems. Semin Cell Dev Biol. 2015;47–48:62–73.  https://doi.org/10.1016/j.semcdb.2015.07.001.CrossRefPubMedGoogle Scholar
  23. 23.
    Vodovotz Y. Computational modelling of the inflammatory response in trauma, sepsis and wound healing: implications for modelling resilience. Interface Focus. 2014;4(5):20140004.  https://doi.org/10.1098/rsfs.2014.0004.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fletcher AG, Osterfield M, Baker RE, Shvartsman SY. Vertex models of epithelial morphogenesis. Biophys J. 2014;106(11):2291–304.  https://doi.org/10.1016/j.bpj.2013.11.4498.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fletcher AG, Cooper F, Baker RE. Mechanocellular models of epithelial morphogenesis. Philos Trans R Soc Lond B Biol Sci. 2017;372(1720).  https://doi.org/10.1098/rstb.2015.0519.CrossRefGoogle Scholar
  26. 26.
    George UZ, Bokka KK, Warburton D, Lubkin SR. Quantifying stretch and secretion in the embryonic lung: Implications for morphogenesis. Mech Dev. 2015;138(Pt 3):356–63.  https://doi.org/10.1016/j.mod.2015.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lubkin SR, Murray JD. A mechanism for early branching in lung morphogenesis. J Math Biol. 1995;34(1):77–94.CrossRefPubMedGoogle Scholar
  28. 28.
    Clément R, Douady S, Mauroy B. Branching geometry induced by lung self-regulated growth. Phys Biol. 2012;9(6):066006.  https://doi.org/10.1088/1478-3975/9/6/066006.CrossRefPubMedGoogle Scholar
  29. 29.
    Iber D, Menshykau D. The control of branching morphogenesis. Open Biol. 2013;3(9):130088.  https://doi.org/10.1098/rsob.130088.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Varner VD, Nelson CM. Computational models of airway branching morphogenesis. Semin Cell Dev Biol. 2017;67:170–6.  https://doi.org/10.1016/j.semcdb.2016.06.003.CrossRefPubMedGoogle Scholar
  31. 31.
    Tran K, Smith NP, Loiselle DS, Crampin EJ. A metabolite-sensitive, thermodynamically constrained model of cardiac cross-bridge cycling: implications for force development during ischemia. Biophys J. 2010;98(2):267–76.  https://doi.org/10.1016/j.bpj.2009.10.011.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Washio T, Okada JI, Sugiura S, Hisada T. Approximation for cooperative interactions of a spatially-detailed cardiac sarcomere model. Cell Mol Bioeng. 2012;5(1):113–26.  https://doi.org/10.1007/s12195-011-0219-2.CrossRefPubMedGoogle Scholar
  33. 33.
    Dewan S, McCabe KJ, Regnier M, McCulloch AD. Insights and challenges of multi-scale modeling of sarcomere mechanics in cTn and Tm DCM mutants-genotype to cellular phenotype. Front Physiol. 2017;8:151.  https://doi.org/10.3389/fphys.2017.00151.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Constantino J, Hu Y, Trayanova NA. A computational approach to understanding the cardiac electromechanical activation sequence in the normal and failing heart, with translation to the clinical practice of CRT. Prog Biophys Mol Biol. 2012;110(2–3):372–9.  https://doi.org/10.1016/j.pbiomolbio.2012.07.009.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lopez-Perez A, Sebastian R, Ferrero JM. Three-dimensional cardiac computational modelling: methods, features and applications. Biomed Eng Online. 2015;14:35.  https://doi.org/10.1186/s12938-015-0033-5.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Trayanova NA. Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. Circ Res. 2011;108(1):113–28.  https://doi.org/10.1161/CIRCRESAHA.110.223610.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Friedrich J, Lengyel M. Goal-directed decision making with spiking neurons. J Neurosci. 2016;36(5):1529–46.  https://doi.org/10.1523/JNEUROSCI.2854-15.2016.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rustichini A, Conen KE, Cai X, Padoa-Schioppa C. Optimal coding and neuronal adaptation in economic decisions. Nat Commun. 2017;8(1):1208.  https://doi.org/10.1038/s41467-017-01373-y.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cumming BD, McElwain DL, Upton Z. A mathematical model of wound healing and subsequent scarring. J R Soc Interface. 2010;7(42):19–34.  https://doi.org/10.1098/rsif.2008.0536.CrossRefPubMedGoogle Scholar
  40. 40.
    Flegg JA, Byrne HM, Flegg MB, McElwain DL. Wound healing angiogenesis: the clinical implications of a simple mathematical model. J Theor Biol. 2012;300:309–16.  https://doi.org/10.1016/j.jtbi.2012.01.043.CrossRefPubMedGoogle Scholar
  41. 41.
    Sherratt JA, Dallon JC. Theoretical models of wound healing: past successes and future challenges. C R Biol. 2002;325(5):557–64.CrossRefPubMedGoogle Scholar
  42. 42.
    Patel AA, Gawlinski ET, Lemieux SK, Gatenby RA. A cellular automaton model of early tumor growth and invasion. J Theor Biol. 2001;213(3):315–31.  https://doi.org/10.1006/jtbi.2001.2385.CrossRefPubMedGoogle Scholar
  43. 43.
    Powathil G, Kohandel M, Sivaloganathan S, Oza A, Milosevic M. Mathematical modeling of brain tumors: effects of radiotherapy and chemotherapy. Phys Med Biol. 2007;52(11):3291–306.  https://doi.org/10.1088/0031-9155/52/11/023.CrossRefPubMedGoogle Scholar
  44. 44.
    Anderson AR, Chaplain MA. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol. 1998;60(5):857–99.  https://doi.org/10.1006/bulm.1998.0042.CrossRefPubMedGoogle Scholar
  45. 45.
    McDougall SR, Anderson AR, Chaplain MA. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol. 2006;241(3):564–89.  https://doi.org/10.1016/j.jtbi.2005.12.022.CrossRefPubMedGoogle Scholar
  46. 46.
    Vodovotz Y, Chow CC, Bartels J, Lagoa C, Prince JM, Levy RM, et al. In silico models of acute inflammation in animals. Shock. 2006;26(3):235–44.  https://doi.org/10.1097/01.shk.0000225413.13866.fo.CrossRefPubMedGoogle Scholar
  47. 47.
    Day J, Rubin J, Vodovotz Y, Chow CC, Reynolds A, Clermont G. A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration. J Theor Biol. 2006;242(1):237–56.  https://doi.org/10.1016/j.jtbi.2006.02.015.CrossRefPubMedGoogle Scholar
  48. 48.
    Reynolds A, Rubin J, Clermont G, Day J, Vodovotz Y, Bard Ermentrout G. A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol. 2006;242(1):220–36.  https://doi.org/10.1016/j.jtbi.2006.02.016.CrossRefPubMedGoogle Scholar
  49. 49.
    Dong X, Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes. PLoS One. 2010;5(2):e9249.  https://doi.org/10.1371/journal.pone.0009249.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kumar R, Clermont G, Vodovotz Y, Chow CC. The dynamics of acute inflammation. J Theor Biol. 2004;230(2):145–55.  https://doi.org/10.1016/j.jtbi.2004.04.044.CrossRefPubMedGoogle Scholar
  51. 51.
    Álvarez E, Toledano V, Morilla F, Hernández-Jiménez E, Cubillos-Zapata C, Varela-Serrano A, et al. A system dynamics model to predict the human monocyte response to endotoxins. Front Immunol. 2017;8:915.  https://doi.org/10.3389/fimmu.2017.00915.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Brown D, Namas RA, Almahmoud K, Zaaqoq A, Sarkar J, Barclay DA, et al. Trauma in silico: Individual-specific mathematical models and virtual clinical populations. Sci Transl Med. 2015;7(285):285ra61.  https://doi.org/10.1126/scitranslmed.aaa3636.CrossRefPubMedGoogle Scholar
  53. 53.
    Abboud A, Mi Q, Puccio A, Okonkwo D, Buliga M, Constantine G, et al. Inflammation following traumatic brain injury in humans: insights from data-driven and mechanistic models into survival and death. Front Pharmacol. 2016;7:342.  https://doi.org/10.3389/fphar.2016.00342.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Barber J, Tronzo M, Harold Horvat C, Clermont G, Upperman J, Vodovotz Y, et al. A three-dimensional mathematical and computational model of necrotizing enterocolitis. J Theor Biol. 2013;322:17–32.  https://doi.org/10.1016/j.jtbi.2012.11.018.CrossRefPubMedGoogle Scholar
  55. 55.
    Swan AJ, Tawhai MH. Evidence for minimal oxygen heterogeneity in the healthy human pulmonary acinus. J Appl Physiol (1985). 2011;110(2):528–37.  https://doi.org/10.1152/japplphysiol.00888.2010.CrossRefGoogle Scholar
  56. 56.
    Hewitt TJ, Hattler BG, Federspiel WJ. A mathematical model of gas exchange in an intravenous membrane oxygenator. Ann Biomed Eng. 1998;26(1):166–78.CrossRefPubMedGoogle Scholar
  57. 57.
    Brighenti C, Gnudi G, Avanzolini G. A simulation model of the oxygen alveolo-capillary exchange in normal and pathological conditions. Physiol Meas. 2003;24(2):261–75.CrossRefPubMedGoogle Scholar
  58. 58.
    De Backer JW, Vos WG, Gorlé CD, Germonpré P, Partoens B, Wuyts FL, et al. Flow analyses in the lower airways: patient-specific model and boundary conditions. Med Eng Phys. 2008;30(7):872–9.  https://doi.org/10.1016/j.medengphy.2007.11.002.CrossRefPubMedGoogle Scholar
  59. 59.
    Aghasafari P, Bin M, Ibrahim I, Pidaparti R. Strain-induced inflammation in pulmonary alveolar tissue due to mechanical ventilation. Biomech Model Mechanobiol. 2017.  https://doi.org/10.1007/s10237-017-0879-5.CrossRefPubMedGoogle Scholar
  60. 60.
    Pidaparti RM, Koombua K. Tissue strains induced in airways due to mechanical ventilation. Mol Cell Biomech. 2011;8(2):149–68.PubMedGoogle Scholar
  61. 61.
    Pidaparti RM, Swanson J. Effect of mechanical ventilation waveforms on airway wall shear. J Med Eng Technol. 2015;39(1):1–8.  https://doi.org/10.3109/03091902.2014.968675.CrossRefPubMedGoogle Scholar
  62. 62.
    Yin Y, Choi J, Hoffman EA, Tawhai MH, Lin CL. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation. J Comput Phys. 2013;244:168–92.  https://doi.org/10.1016/j.jcp.2012.12.007.CrossRefPubMedGoogle Scholar
  63. 63.
    Swan AJ, Clark AR, Tawhai MH. A computational model of the topographic distribution of ventilation in healthy human lungs. J Theor Biol. 2012;300:222–31.  https://doi.org/10.1016/j.jtbi.2012.01.042.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Roth CJ, Yoshihara L, Ismail M, Wall WA. Computational modelling of the respiratory system: discussion of coupled modeling approaches and two recent extensions. Comput Methods Appl Mech Eng. 2017;314:473–93.CrossRefGoogle Scholar
  65. 65.
    Burrowes KS, Clark AR, Tawhai MH. Blood flow redistribution and ventilation-perfusion mismatch during embolic pulmonary arterial occlusion. Pulm Circ. 2011;1(3):365–76.  https://doi.org/10.4103/2045-8932.87302.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tang BT, Fonte TA, Chan FP, Tsao PS, Feinstein JA, Taylor CA. Three-dimensional hemodynamics in the human pulmonary arteries under resting and exercise conditions. Ann Biomed Eng. 2011;39(1):347–58.  https://doi.org/10.1007/s10439-010-0124-1.CrossRefPubMedGoogle Scholar
  67. 67.
    Rausch SM, Martin C, Bornemann PB, Uhlig S, Wall WA. Material model of lung parenchyma based on living precision-cut lung slice testing. J Mech Behav Biomed Mater. 2011;4(4):583–92.  https://doi.org/10.1016/j.jmbbm.2011.01.006.CrossRefPubMedGoogle Scholar
  68. 68.
    Berger L, Bordas R, Burrowes K, Grau V, Tavener S, Kay D. A poroelastic model coupled to a fluid network with applications in lung modelling. Int J Numer Method Biomed Eng. 2016;32(1):e02731.  https://doi.org/10.1002/cnm.2731.CrossRefPubMedGoogle Scholar
  69. 69.
    Burrowes KS, Doel T, Brightling C. Computational modeling of the obstructive lung diseases asthma and COPD. J Transl Med. 2014;12(Suppl 2):5.  https://doi.org/10.1186/1479-5876-12-S2-S5.CrossRefGoogle Scholar
  70. 70.
    Kim J, Heise RL, Reynolds AM, Pidaparti RM. Quantification of age-related lung tissue mechanics under mechanical ventilation. Med Sci (Basel). 2017.  https://doi.org/10.3390/medsci5040021.CrossRefGoogle Scholar
  71. 71.
    Kim J, Heise RL, Reynolds AM, Pidaparti RM. Aging effects on airflow dynamics and lung function in human bronchioles. PLoS One. 2017;12(8):e0183654.  https://doi.org/10.1371/journal.pone.0183654.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Cheng YH, You SH, Lin YJ, Chen SC, Chen WY, Chou WC, et al. Mathematical modeling of postcoinfection with influenza A virus and Streptococcus pneumoniae, with implications for pneumonia and COPD-risk assessment. Int J Chron Obstruct Pulmon Dis. 2017;12:1973–88.  https://doi.org/10.2147/COPD.S138295.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Cox LA. A causal model of chronic obstructive pulmonary disease (COPD) risk. Risk Anal. 2011;31(1):38–62.  https://doi.org/10.1111/j.1539-6924.2010.01487.x.CrossRefPubMedGoogle Scholar
  74. 74.
    Brown BN, Price IM, Toapanta FR, DeAlmeida DR, Wiley CA, Ross TM, et al. An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Math Biosci. 2011;231(2):186–96.  https://doi.org/10.1016/j.mbs.2011.03.005.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kim Y, Lee S, Kim YS, Lawler S, Gho YS, Kim YK, et al. Regulation of Th1/Th2 cells in asthma development: a mathematical model. Math Biosci Eng. 2013;10(4):1095–133.CrossRefPubMedGoogle Scholar
  76. 76.
    Reynolds A, Koombua K, Pidaparti RM, Ward KR. Cellular automata modeling of pulmonary inflammation. Mol Cell Biomech. 2012;9(2):141–56.PubMedGoogle Scholar
  77. 77.
    Ibrahim I, Oruganti SV, Pidaparti R. Simulation of Healing Threshold in Strain-Induced Inflammation through a discrete informatics model. IEEE J Biomed Health Inform. 2017.  https://doi.org/10.1109/JBHI.2017.2669729.CrossRefPubMedGoogle Scholar
  78. 78.
    W GA,M. S. C. Agent-based modeling approaches to multi-scale systems biology: an example agent-based model of acute pulmonary inflammation. In: Prokop A, Csukás B, editors. Systems biology. Dordrecht: Springer; 2013. pp. 429–61.Google Scholar
  79. 79.
    Lane N, Robins RA, Corne J, Fairclough L. Regulation in chronic obstructive pulmonary disease: the role of regulatory T-cells and Th17 cells. Clin Sci. 2010;119(2):75–86.CrossRefPubMedGoogle Scholar
  80. 80.
    Donnelly LE, Barnes PJ. Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease. Trends Pharmacol Sci. 2006;27(10):546–53.CrossRefPubMedGoogle Scholar
  81. 81.
    Traynor TR, Herring AC, Dorf ME, Kuziel WA, Toews GB, Huffnagle GB. Differential roles of CC chemokine ligand 2/monocyte chemotactic protein-1 and CCR2 in the development of T1 immunity. J Immunol. 2002;168(9):4659–66.CrossRefPubMedGoogle Scholar
  82. 82.
    Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci. 2017;131(13):1541–58.CrossRefGoogle Scholar
  83. 83.
    Suki B, Lutchen KR, Ingenito EP. On the progressive nature of emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med. 2003;168(5):516–21.CrossRefPubMedGoogle Scholar
  84. 84.
    Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–92.CrossRefPubMedGoogle Scholar
  85. 85.
    Chung KF. The role of airway smooth muscle in the pathogenesis of airway wall remodeling in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):347–54.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Hutchinson AT, Vlahos R, Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol. 2014;5:435.Google Scholar
  87. 87.
    Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015–26.CrossRefPubMedGoogle Scholar
  88. 88.
    Kudo M, Ishigatsubo Y, Aoki I. Pathology of asthma. Front Microbiol. 2013;4:263.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Chung KF. Targeting the interleukin pathway in the treatment of asthma. Lancet. 2015;386(9998):1086–96.CrossRefPubMedGoogle Scholar
  90. 90.
    Wang Y, Bai C, Li K, Adler KB, Wang X. Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir Med. 2008;102(7):949–55.CrossRefPubMedGoogle Scholar
  91. 91.
    Holgate ST. Innate and adaptive immune responses in asthma. Nat Med. 2012;18(5):673–83.CrossRefPubMedGoogle Scholar
  92. 92.
    Kubo T, Morita H, Sugita K, Akdis CA. Introduction to mechanisms of allergic diseases. Middleton’s allergy essentials. Amsterdam: Elsevier; 2017. pp. 1–27.Google Scholar
  93. 93.
    Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res Fundam Mol Mech Mutagen. 2010;690(1):24–39.CrossRefGoogle Scholar
  94. 94.
    Carr TF, Berdnikovs S, Simon H-U, Bochner BS, Rosenwasser LJ. Eosinophilic bioactivities in severe asthma. World Allergy Organ J. 2016;9(1):21.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Barnig C, Frossard N, Levy BD. Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol Ther. 2018;186:98–113CrossRefPubMedGoogle Scholar
  96. 96.
    Barnig C, Levy BD. Innate immunity is a key factor for the resolution of inflammation in asthma. Eur Respir Rev. 2015;24(135):141–53.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Martín-Orozco E, Norte-Muñoz M, Martínez-García J. Regulatory T cells in allergy and asthma. Front Pediatr. 2017;5.Google Scholar
  98. 98.
    Ross R. Platelet-derived growth factor. Lancet. 1989;333(8648):1179–82.CrossRefGoogle Scholar
  99. 99.
    Heldin C-H. Structural and functional studies on platelet-derived growth factor. EMBO J. 1992;11(12):4251.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Dolgachev VA, Ullenbruch MR, Lukacs NW, Phan SH. Role of stem cell factor and bone marrow-derived fibroblasts in airway remodeling. Am J Pathol. 2009;174(2):390–400.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, Bhandari V, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10(10):1095–103.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Bhandari V, Choo-Wing R, Chapoval SP, Lee CG, Tang C, Kim Y, et al. Essential role of nitric oxide in VEGF-induced, asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proc Natl Acad Sci. 2006;103(29):11021–6.CrossRefPubMedGoogle Scholar
  103. 103.
    McMillan SJ, Kearley J, Campbell JD, Zhu X-W, Larbi KY, Shipley JM, et al. Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol. 2004;172(4):2586–94.CrossRefPubMedGoogle Scholar
  104. 104.
    Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J Exp Med. 2001;194(6):809–22.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45.CrossRefPubMedGoogle Scholar
  106. 106.
    Cutting GR, Engelhardt J, Zeitlin PL. Genetics and pathophysiology of cystic fibrosis. Kendig’s disorders of the respiratory tract in children (9th Edition). Amsterdam: Elsevier; 2019. pp. 757–68.e6.Google Scholar
  107. 107.
    Collawn JF, Matalon S. CFTR and lung homeostasis. Am J Physiol Lung Cell Mol Physiol. 2014;307(12):L917-L23.CrossRefGoogle Scholar
  108. 108.
    Muir A, Soong G, Sokol S, Reddy B, Gomez MI, van Heeckeren A, et al. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol. 2004;30(6):777–83.CrossRefPubMedGoogle Scholar
  109. 109.
    Chirico V, Lacquaniti A, Leonardi S, Grasso L, Rotolo N, Romano C, et al. Acute pulmonary exacerbation and lung function decline in patients with cystic fibrosis: high-mobility group box 1 (HMGB1) between inflammation and infection. Clin Microbiol Infect. 2015;21(4):368.e1–e9.CrossRefGoogle Scholar
  110. 110.
    Cohen TS, Prince A. Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med. 2012;18(4):509–19.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    McCuaig S, Martin JG. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis. Lancet Respir Med. 2013;1(2):137–47.CrossRefPubMedGoogle Scholar
  112. 112.
    Dekkers JF, van der Ent CK, Kalkhoven E, Beekman JM. PPARγ as a therapeutic target in cystic fibrosis. Trends Mol Med. 2012;18(5):283–91.CrossRefPubMedGoogle Scholar
  113. 113.
    Bals R, Weiner DJ, Wilson JM. The innate immune system in cystic fibrosis lung disease. J Clin Investig. 1999;103(3):303–7.CrossRefPubMedGoogle Scholar
  114. 114.
    Tang AC, Turvey SE, Alves MP, Regamey N, Tümmler B, Hartl D. Current concepts: host–pathogen interactions in cystic fibrosis airways disease. Eur Respir Rev. 2014;23(133):320–32.CrossRefPubMedGoogle Scholar
  115. 115.
    Hilliard TN, Regamey N, Shute JK, Nicholson AG, Alton EW, Bush A, et al. Airway remodelling in children with cystic fibrosis. Thorax. 2007;62(12):1074–80.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Murphy G, Docherty AJ. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol. 1992;7:120-.CrossRefPubMedGoogle Scholar
  117. 117.
    Ratjen F, Hartog C, Paul K, Wermelt J, Braun J. Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase alpha. Thorax. 2002;57(11):930–4.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Courtney J, Ennis M, Elborn J. Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros. 2004;3(4):223–31.CrossRefPubMedGoogle Scholar
  119. 119.
    Hardie WD, Bejarano PA, Miller MA, Yankaskas JR, Ritter JH, Whitsett JA, et al. Immunolocalization of transforming growth factor α and epidermal growth factor receptor in lungs of patients with cystic fibrosis. Pediatr Dev Pathol. 1999;2(5):415–23.CrossRefPubMedGoogle Scholar
  120. 120.
    Booth BW, Adler KB, Bonner JC, Tournier F, Martin LD. Interleukin-13 induces proliferation of human airway epithelial cells in vitro via a mechanism mediated by transforming growth factor-α. Am J Respir Cell Mol Biol. 2001;25(6):739–43.CrossRefPubMedGoogle Scholar
  121. 121.
    Spannhake EW. Interactions of pollutants with the epithelium. In: The pulmonary epithelium in health and disease. John Wiley & Sons; 2008. pp 275–99.Google Scholar
  122. 122.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Naylor R, Baker D, Van Deursen J. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther. 2013;93(1):105–16.CrossRefPubMedGoogle Scholar
  124. 124.
    Hosgood HD, Menashe I, He X, Chanock S, Lan Q. PTEN identified as important risk factor of chronic obstructive pulmonary disease. Respir Med. 2009;103(12):1866–70.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax. 2015.  https://doi.org/10.1136/thoraxjnl-2014-206084.CrossRefPubMedGoogle Scholar
  126. 126.
    Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421(6919):182–7.CrossRefPubMedGoogle Scholar
  127. 127.
    Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004;14(10):885–90.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493(7432):338–45.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Ito K, Colley T, Mercado N. Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease. Int J Chron Obstruct Pulmon Dis. 2012;7(4):641–52.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Hahn DR, Na C-L, Weaver TE. Reserve autophagic capacity in alveolar epithelia provides a replicative niche for influenza A virus. Am J Respir Cell Mol Biol. 2014;51(3):400–12.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. CHEST J. 2009;135(1):173–80.CrossRefGoogle Scholar
  132. 132.
    Aoshiba K, Zhou F, Tsuji T, Nagai A. DNA damage as a molecular link in the pathogenesis of COPD in smokers. Eur Respir J. 2012;39(6):1368–76.CrossRefPubMedGoogle Scholar
  133. 133.
    Brightling CE, Monteiro W, Ward R, Parker D, Morgan MD, Wardlaw AJ, et al. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2000;356(9240):1480–5.  https://doi.org/10.1016/S0140-6736(00)02872-5.CrossRefPubMedGoogle Scholar
  134. 134.
    Athanazio R. Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics (Sao Paulo). 2012;67(11):1335–43.CrossRefGoogle Scholar
  135. 135.
    Sutherland ER, Martin RJ. Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma. J Allergy Clin Immunol. 2003;112(5):819–27.  https://doi.org/10.1016/S0091 (quiz 28).CrossRefPubMedGoogle Scholar
  136. 136.
    Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros. 2015;14(4):419–30.  https://doi.org/10.1016/j.jcf.2015.03.003.CrossRefPubMedGoogle Scholar
  137. 137.
    Stankiewicz W, Dabrowski MP, Chcialowski A, Plusa T. Cellular and cytokine immunoregulation in patients with chronic obstructive pulmonary disease and bronchial asthma. Mediators Inflamm. 2002;11(5):307–12.  https://doi.org/10.1080/09629350210000015719.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Burrows B, Knudson RJ, Cline MG, Lebowitz MD. Quantitative relationships between cigarette smoking and ventilatory function. Am Rev Respir Dis. 1977;115(2):195–205.  https://doi.org/10.1164/arrd.1977.115.2.195.CrossRefPubMedGoogle Scholar
  139. 139.
    Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–24.  https://doi.org/10.1164/rccm.200711-1754OC.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Voit EO. A systems-theoretical framework for health and disease: inflammation and preconditioning from an abstract modeling point of view. Math Biosci. 2009;217(1):11–8.  https://doi.org/10.1016/j.mbs.2008.09.005.CrossRefPubMedGoogle Scholar
  141. 141.
    Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):4–9.  https://doi.org/10.1093/gerona/glu057.CrossRefGoogle Scholar
  142. 142.
    Medzhitov R. Inflammation. new adventures of an old flame. Cell. 2010;140(6):771–6.  https://doi.org/10.1016/j.cell.2010.03.006.CrossRefGoogle Scholar
  143. 143.
    Goldstein B, Faeder JR, Hlavacek WS. Mathematical and computational models of immune-receptor signalling. Nat Rev Immunol. 2004;4(6):445–56.  https://doi.org/10.1038/nri1374.CrossRefPubMedGoogle Scholar
  144. 144.
    Li NY, Verdolini K, Clermont G, Mi Q, Rubinstein EN, Hebda PA, et al. A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS One. 2008;3(7):e2789.  https://doi.org/10.1371/journal.pone.0002789.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Brauer F, Kris C. Dynamical systems for biological modeling: an introduction. Boca Raton: CRC Press; 2015.Google Scholar
  146. 146.
    Pigozzo AB, Macedo GC, Santos RW, Lobosco M. On the computational modeling of the innate immune system. BMC Bioinform. 2013;14(Suppl 6):7.  https://doi.org/10.1186/1471-2105-14-S6-S7.CrossRefGoogle Scholar
  147. 147.
    Lee J, Adler FR, Kim PS. A mathematical model for the macrophage response to respiratory viral infection in normal and asthmatic conditions. Bull Math Biol. 2017.  https://doi.org/10.1007/s11538-017-0315-0.CrossRefPubMedGoogle Scholar
  148. 148.
    Chernyavsky IL, Croisier H, Chapman LA, Kimpton LS, Hiorns JE, Brook BS, et al. The role of inflammation resolution speed in airway smooth muscle mass accumulation in asthma: insight from a theoretical model. PLoS One. 2014;9(3):e90162.  https://doi.org/10.1371/journal.pone.0090162.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    James AL, Elliot JG, Jones RL, Carroll ML, Mauad T, Bai TR, et al. Airway smooth muscle hypertrophy and hyperplasia in asthma. Am J Respir Crit Care Med. 2012;185(10):1058–64.  https://doi.org/10.1164/rccm.201110-1849OC.CrossRefPubMedGoogle Scholar
  150. 150.
    Brook BS, Peel SE, Hall IP, Politi AZ, Sneyd J, Bai Y, et al. A biomechanical model of agonist-initiated contraction in the asthmatic airway. Respir Physiol Neurobiol. 2010;170(1):44–58.  https://doi.org/10.1016/j.resp.2009.11.006.CrossRefPubMedGoogle Scholar
  151. 151.
    Moulton DE, Goriely A. Possible role of differential growth in airway wall remodeling in asthma. J Appl Physiol (1985). 2011;110(4):1003–12.  https://doi.org/10.1152/japplphysiol.00991.2010.CrossRefGoogle Scholar
  152. 152.
    Schlender A, Alperin PE, Grossman HL, Sutherland ER. Modeling the impact of increased adherence to asthma therapy. PLoS One. 2012;7(12):e51139.  https://doi.org/10.1371/journal.pone.0051139.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Smith AM, Adler FR, Ribeiro RM, Gutenkunst RN, McAuley JL, McCullers JA, et al. Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae. PLoS Pathog. 2013;9(3):e1003238.  https://doi.org/10.1371/journal.ppat.1003238.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Smith AM, McCullers JA, Adler FR. Mathematical model of a three-stage innate immune response to a pneumococcal lung infection. J Theor Biol. 2011;276(1):106–16.  https://doi.org/10.1016/j.jtbi.2011.01.052.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Markovetz MR, Corcoran TE, Locke LW, Myerburg MM, Pilewski JM, Parker RS. A physiologically-motivated compartment-based model of the effect of inhaled hypertonic saline on mucociliary clearance and liquid transport in cystic fibrosis. PLoS One. 2014;9(11):e111972.  https://doi.org/10.1371/journal.pone.0111972.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Brown BN, Price IM, Toapanta FR, DeAlmeida DR, Wiley CA, Ross TM, et al. An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Math Biosci. 2011;231(2):186–96.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Donovan GM. Multiscale mathematical models of airway constriction and disease. Pulm Pharmacol Ther. 2011;24(5):533–9.  https://doi.org/10.1016/j.pupt.2011.01.003.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Politi AZ, Donovan GM, Tawhai MH, Sanderson MJ, Lauzon AM, Bates JH, et al. A multiscale, spatially distributed model of asthmatic airway hyper-responsiveness. J Theor Biol. 2010;266(4):614–24.  https://doi.org/10.1016/j.jtbi.2010.07.032.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Venegas JG, Winkler T, Musch G, Vidal Melo MF, Layfield D, Tgavalekos N, et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature. 2005;434(7034):777–82.  https://doi.org/10.1038/nature03490.CrossRefPubMedGoogle Scholar
  160. 160.
    Amin SD, Majumdar A, Frey U, Suki B. Modeling the dynamics of airway constriction: effects of agonist transport and binding. J Appl Physiol (1985). 2010;109(2):553–63.  https://doi.org/10.1152/japplphysiol.01111.2009.CrossRefGoogle Scholar
  161. 161.
    Cilfone NA, Perry CR, Kirschner DE, Linderman JJ. Multi-scale modeling predicts a balance of tumor necrosis factor-α and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS One. 2013;8(7):e68680.  https://doi.org/10.1371/journal.pone.0068680.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. J Immunol. 2011;186(6):3472–83.  https://doi.org/10.4049/jimmunol.1003299.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Ceresa M, Olivares AL, Fernandez Suelves S, Noailly J, Gonzalez Ballester MA. Multi-scale immunological and biomechanical model of emphysema progression. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:2712–5.  https://doi.org/10.1109/EMBC.2017.8037417.CrossRefPubMedGoogle Scholar
  164. 164.
    Ceresa M, Olivares AL, Noailly J, González Ballester MA. Coupled immunological and biomechanical model of emphysema progression. Front Physiol. 2018;9:388.  https://doi.org/10.3389/fphys.2018.00388.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Cilfone NA, Kirschner DE, Linderman JJ. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems. Cell Mol Bioeng. 2015;8(1):119–36.  https://doi.org/10.1007/s12195-014-0363-6.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Marino S, Kirschner DE. A multi-compartment hybrid computational model predicts key roles for dendritic cells in tuberculosis infection. Computation (Basel). 2016.  https://doi.org/10.3390/computation4040039.CrossRefGoogle Scholar
  167. 167.
    Warsinske HC, Wheaton AK, Kim KK, Linderman JJ, Moore BB, Kirschner DE. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis. Front Pharmacol. 2016;7:183.  https://doi.org/10.3389/fphar.2016.00183.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Bouchnita A, Bocharov G, Meyerhans A, Volpert V. Hybrid approach to model the spatial regulation of T cell responses. BMC Immunol. 2017;18(Suppl 1):29.  https://doi.org/10.1186/s12865-017-0205-0.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Cevenini E, Caruso C, Candore G, Capri M, Nuzzo D, Duro G, et al. Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr Pharm Des. 2010;16(6):609–18.CrossRefPubMedGoogle Scholar
  170. 170.
    Weinberg EJ, Schoen FJ, Mofrad MR. A computational model of aging and calcification in the aortic heart valve. PLoS One. 2009;4(6):e5960.  https://doi.org/10.1371/journal.pone.0005960.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Mc Auley MT, Mooney KM. Computationally modeling lipid metabolism and aging: a mini-review. Comput Struct Biotechnol J. 2015;13:38–46.  https://doi.org/10.1016/j.csbj.2014.11.006.CrossRefPubMedGoogle Scholar
  172. 172.
    Mooney KM, Morgan AE, Mc Auley MT. Aging and computational systems biology. Wiley Interdiscip Rev Syst Biol Med. 2016;8(2):123–39.  https://doi.org/10.1002/wsbm.1328.CrossRefPubMedGoogle Scholar
  173. 173.
    Mc Auley MT, Mooney KM. Computational systems biology for aging research. Interdiscip Top Gerontol. 2015;40:35–48.  https://doi.org/10.1159/000364928.CrossRefPubMedGoogle Scholar
  174. 174.
    Witten TM. Modeling cellular aging: an introduction—mathematical and computational approaches. In: Rattan SIS, Hayflick L, editors. Cellular ageing and replicative senescence. vol 4. New York: Springer International Publishing; 2016. pp. 117–41.Google Scholar
  175. 175.
    Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–35.  https://doi.org/10.1038/nature07201.CrossRefGoogle Scholar
  176. 176.
    Weber GF, Chousterman BG, He S, Fenn AM, Nairz M, Anzai A, et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science. 2015;347(6227):1260–5.  https://doi.org/10.1126/science.aaa4268.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin Immunol. 2015;27(3):200–15.  https://doi.org/10.1016/j.smim.2015.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Chiang N, Dalli J, Colas RA, Serhan CN. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J Exp Med. 2015;212(8):1203–17.  https://doi.org/10.1084/jem.20150225.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Medzhitov R, Shevach EM, Trinchieri G, Mellor AL, Munn DH, Gordon S, et al. Highlights of 10 years of immunology in nature reviews immunology. Nat Rev Immunol. 2011;11(10):693–702.  https://doi.org/10.1038/nri3063.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Reyes M, Quintanilla C, Burrows R, Blanco E, Cifuentes M, Gahagan S. Obesity is associated with acute inflammation in a sample of adolescents. Pediatr Diabetes. 2015;16(2):109–16.  https://doi.org/10.1111/pedi.12129.CrossRefPubMedGoogle Scholar
  181. 181.
    Wang X, Zhu M, Hjorth E, Cortés-Toro V, Eyjolfsdottir H, Graff C, et al. Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement. 2015;11(1):40–50.  https://doi.org/10.1016/j.jalz.2013.12.024.CrossRefPubMedGoogle Scholar
  182. 182.
    Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015;160(5):816–27.  https://doi.org/10.1016/j.cell.2015.02.010.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Parya Aghasafari
    • 1
  • Uduak George
    • 1
    • 2
  • Ramana Pidaparti
    • 1
  1. 1.College of EngineeringUniversity of GeorgiaAthensUSA
  2. 2.Department of Mathematics and StatisticsSan Diego State UniversitySan DiegoUSA

Personalised recommendations