Advertisement

Inflammation Research

, Volume 67, Issue 11–12, pp 951–964 | Cite as

Tetraspanin 1 inhibits TNFα-induced apoptosis via NF-κB signaling pathway in alveolar epithelial cells

  • Lawei Yang
  • Yahong Wang
  • Zhanchun Pan
  • Shenglan Gao
  • Bao’an Zou
  • Ziying Lin
  • Dehui Feng
  • Changmei HuangFu
  • Gang Liu
Original Research Paper
  • 171 Downloads

Abstract

Objective

Tetraspanin family plays an important role in the pathogenesis of cancer, but its role in lung fibrosis is unknown. To determine whether tetraspanin 1 (TSPAN1), a member of the family, may be involved in the pathogenesis of pulmonary fibrosis.

Methods

TNFα -stimulated human alveolar epithelial (A549) and alveolar epithelial type II cell (AT2) were treated in vitro. Murine pulmonary fibrosis model was generated by injection of bleomycin (BLM). The expression of TSPAN1 was examined in vivo using the bleomycin-induced lung fibrosis model and tissue sample of IPF patients. Then we transfected the cells with TSPAN1 siRNA or plasmid and detected the expression changes of related proteins and cell apoptosis.

Results

In our study, we found that TSPAN1 was markedly down-regulated in lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and in bleomycin-induced pulmonary fibrosis in mice. We also found that TSPAN1 was significantly down-regulated in A549 and primary (AT2) cells following exposure to TNFα. Meanwhile, TSPAN1 inhibited p-IκBα, which attenuated nuclear NF-κB translocation and activation and inhibited apoptosis. We demonstrated that TSPAN1 reduced Bax translocation and caspase-3 activation, inhibited the apoptosis by regulating the NF-κB pathway in response to TNFα.

Conclusions

We conclude that TSPAN1 mediated apoptosis resistance of alveolar epithelial cells by regulating the NF-κB pathway. TSPAN1 may be a potential therapeutic target for pulmonary fibrosis or acute lung injury.

Keywords

Tetraspanin 1 Alveolar epithelial cells TNFα Apoptosis NF-κB 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 81570062, 81600049 and 81172615); Guangdong Natural Science Foundation (Grant nos. 2016A030313681); Guangdong Medical Science Foundation (Grant nos. A2018134, A2017010, A2017027); Guangdong medical University scientific research fund (Grant nos. M2016001, M2016007, M2016022).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

References

  1. 1.
    Caminati A, Cassandro R, Torre O, Harari S. Severe idiopathic pulmonary fibrosis: what can be done? Eur Respir Rev. 2017;26(145).CrossRefGoogle Scholar
  2. 2.
    Kolb M, Bonella F, Wollin L. Therapeutic targets in idiopathic pulmonary fibrosis. Respir Med. 2017;131:49–57.CrossRefGoogle Scholar
  3. 3.
    Panduri V, Weitzman SA, Chandel NS, Kamp DW. Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol. 2004;286(6):L1220-7.CrossRefGoogle Scholar
  4. 4.
    Uhal BD. Epithelial apoptosis in the initiation of lung fibrosis. Eur Respir J. 2003;44 Suppl:7s–9s.CrossRefGoogle Scholar
  5. 5.
    Song X, Wang B, Lin S, Jing L, Mao C, Xu P, Lv C, Liu W, Zuo J. Astaxanthin inhibits apoptosis in alveolar epithelial cells type II in vivo and in vitro through the ROS-dependent mitochondrial signalling pathway. J Cell Mol Med. 2014;18(11):2198–212.CrossRefGoogle Scholar
  6. 6.
    Zheng JX, Guan SH, Xu Q, Tang Y, Liu JZ, Lu XT. Effect of Napsin A transfection into type II alveolar epithelial cells on pulmonary fibrosis. Zhonghua Yi Xue Za Zhi. 2010;90(46):3294–9.PubMedGoogle Scholar
  7. 7.
    Zhong L, Wang W, Tao H, Guan Y. The effect of co-immobilized TNF-alpha/IFN-gamma on mitochondrial membrane potential of HeLa cells. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009;26(5):972–7.PubMedGoogle Scholar
  8. 8.
    Xie W, Wang H, Liu Q, Li Y, Wang J, Yao S, Wu Q. ResolvinD1 reduces apoptosis and inflammation in primary human alveolar epithelial type 2 cells. Lab Invest. 2016;96(5):526–36.CrossRefGoogle Scholar
  9. 9.
    van Deventer SJ, Dunlock VE, van Spriel AB. Molecular interactions shaping the tetraspanin web. Biochem Soc Trans. 2017;45(3):741–50.CrossRefGoogle Scholar
  10. 10.
    Xu F, Gao Y, Wang Y, Pan J, Sha J, Shao X, Kang X, Qin J, You MJ, Huang Y, Dong B, Xue W. Decreased TSPAN1 promotes prostate cancer progression and is a marker for early biochemical recurrence after radical prostatectomy. Oncotarget. 2016;7(39):63294–305.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Lu Z, Luo T, Nie M, Pang T, Zhang X, Shen X, Ma L, Bi J, Wei G, Fang G, Xue X. TSPAN1 functions as an oncogene in gastric cancer and is downregulated by miR-573. FEBS Lett. 2015;589(15):1988–94.CrossRefGoogle Scholar
  12. 12.
    Hou FQ, Lei XF, Yao JL, Wang YJ, Zhang W. Tetraspanin 1 is involved in survival, proliferation and carcinogenesis of pancreatic cancer. Oncol Rep. 2015;34(6):3068–76.CrossRefGoogle Scholar
  13. 13.
    Holters S, Anacker J, Jansen L, Beer-Grondke K, Durst M, Rubio I. Tetraspanin 1 promotes invasiveness of cervical cancer cells. Int J Oncol. 2013;43(2):503–12.CrossRefGoogle Scholar
  14. 14.
    Chen L, Yuan D, Zhao R, Li H, Zhu J. Suppression of TSPAN1 by RNA interference inhibits proliferation and invasion of colon cancer cells in vitro. Tumori. 2010;96(5):744–50.CrossRefGoogle Scholar
  15. 15.
    Malaviya R, Laskin JD, Laskin DL. Anti-TNFalpha therapy in inflammatory lung diseases. Pharmacol Ther. 2017;180:90–8.CrossRefGoogle Scholar
  16. 16.
    Golan-Gerstl R, Wallach-Dayan SB, Zisman P, Cardoso WV, Goldstein RH, Breuer R. Cellular FLICE-like inhibitory protein deviates myofibroblast fas-induced apoptosis toward proliferation during lung fibrosis. Am J Respir Cell Mol Biol. 2012;47(3):271–9.CrossRefGoogle Scholar
  17. 17.
    Tang X, Yang J, Li J. Accelerative effect of leflunomide on recovery from hepatic fibrosis involves TRAIL-mediated hepatic stellate cell apoptosis. Life Sci. 2009;84(15–16):552–7.CrossRefGoogle Scholar
  18. 18.
    Yang J, Li G, Zhang K. Pro-survival effects by NF-kappaB, Akt and ERK(1/2) and anti-apoptosis actions by Six1 disrupt apoptotic functions of TRAIL-Dr4/5 pathway in ovarian cancer. Biomed Pharmacother. 2016;84:1078–87.CrossRefGoogle Scholar
  19. 19.
    Ou C, Sun Z, Zhang H, Xiong W, Ma J, Zhou M, Lu J, Zeng Z, Bo X, Chen P, Li G, Li X, Li X. SPLUNC1 reduces the inflammatory response of nasopharyngeal carcinoma cells infected with the EB virus by inhibiting the TLR9/NF-kappaB pathway. Oncol Rep. 2015;33(6):2779–88.CrossRefGoogle Scholar
  20. 20.
    Li L, Wu W, Huang W, Hu G, Yuan W, Li W. NF-kappaB RNAi decreases the Bax/Bcl-2 ratio and inhibits TNF-alpha-induced apoptosis in human alveolar epithelial cells. Inflamm Res. 2013;62(4):387–97.CrossRefGoogle Scholar
  21. 21.
    Wang Y, Tong X, Omoregie ES, Liu W, Meng S, Ye X. Tetraspanin 6 (TSPAN6) negatively regulates retinoic acid-inducible gene I-like receptor-mediated immune signaling in a ubiquitination-dependent manner. J Biol Chem. 2012;287(41):34626–34.CrossRefGoogle Scholar
  22. 22.
    Tardif MR, Tremblay MJ. Tetraspanin CD81 provides a costimulatory signal resulting in increased human immunodeficiency virus type 1 gene expression in primary CD4+ T lymphocytes through NF-kappaB, NFAT, and AP-1 transduction pathways. J Virol. 2005;79(7):4316–28.CrossRefGoogle Scholar
  23. 23.
    Yang L, Liu G, Lin Z, Wang Y, He H, Liu T, Kamp DW. Pro-inflammatory response and oxidative stress induced by specific components in ambient particulate matter in human bronchial epithelial cells. Environ Toxicol. 2016;31(8):923–36.CrossRefGoogle Scholar
  24. 24.
    Yang L, Wang Y, Lin Z, Zhou X, Chen T, He H, Huang H, Yang T, Jiang Y, Xu W, Yao W, Liu T, Liu G. Mitochondrial OGG1 protects against PM2.5-induced oxidative DNA damage in BEAS-2B cells. Exp Mol Pathol. 2015;99(2):365–73.CrossRefGoogle Scholar
  25. 25.
    Yang IV, Coldren CD, Leach SM, Seibold MA, Murphy E, Lin J, Rosen R, Neidermyer AJ, McKean DF, Groshong SD, Cool C, Cosgrove GP, Lynch DA, Brown KK, Schwarz MI, Fingerlin TE, Schwartz DA. Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis. Thorax. 2013;68(12):1114–21.CrossRefGoogle Scholar
  26. 26.
    Wang Y, Liang Y, Luo J, Nie J, Yin H, Chen Q, Dong J, Zhu J, Xia J, Shuai W. XIST/miR-139 axis regulates bleomycin (BLM)-induced extracellular matrix (ECM) and pulmonary fibrosis through beta-catenin. Oncotarget. 2017;8(39):65359–69.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zuo H, Lin T, Wang D, Peng R, Wang S, Gao Y, Xu X, Li Y, Wang S, Zhao L, Wang L, Zhou H. Neural cell apoptosis induced by microwave exposure through mitochondria-dependent caspase-3 pathway. Int J Med Sci. 2014;11(5):426–35.CrossRefGoogle Scholar
  28. 28.
    Wang ZF, Yin J, Zhang Y, Zhu LQ, Tian Q, Wang XC, Li HL, Wang JZ. Overexpression of tau proteins antagonizes amyloid-beta-potentiated apoptosis through mitochondria-caspase-3 pathway in N2a cells. J Alzheimers Dis. 2010;20(1):145–57.CrossRefGoogle Scholar
  29. 29.
    Polla BS, Jacquier-Sarlin MR, Kantengwa S, Mariethoz E, Hennet T, Russo-Marie F, Cossarizza A. TNF alpha alters mitochondrial membrane potential in L929 but not in TNF alpha-resistant L929.12 cells: relationship with the expression of stress proteins, annexin 1 and superoxide dismutase activity. Free Radic Res. 1996;25(2):125–31.CrossRefGoogle Scholar
  30. 30.
    Thomas WD, Zhang XD, Franco AV, Nguyen T, Hersey P. TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria. J Immunol. 2000;165(10):5612–20.CrossRefGoogle Scholar
  31. 31.
    Jiang C, Masood M, Rasul A, Wei W, Wang Y, Ali M, Mustaqeem M, Li J, Li X. Altholactone inhibits NF-kappaB and STAT3 activation and induces reactive oxygen species-mediated apoptosis in prostate cancer DU145 cells. Molecules. 2017;22(2):240.CrossRefGoogle Scholar
  32. 32.
    Lluis JM, Buricchi F, Chiarugi P, Morales A, Fernandez-Checa JC. Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death. Cancer Res. 2007;67(15):7368–77.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lawei Yang
    • 1
  • Yahong Wang
    • 1
  • Zhanchun Pan
    • 2
  • Shenglan Gao
    • 1
  • Bao’an Zou
    • 2
  • Ziying Lin
    • 1
  • Dehui Feng
    • 3
  • Changmei HuangFu
    • 3
  • Gang Liu
    • 1
  1. 1.Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
  2. 2.Department of Respiratory MedicineAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
  3. 3.Elderly Medical CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina

Personalised recommendations